論文の概要: SEM-GAT: Explainable Semantic Pose Estimation using Learned Graph
Attention
- arxiv url: http://arxiv.org/abs/2308.03718v2
- Date: Sun, 22 Oct 2023 18:46:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 08:02:18.609265
- Title: SEM-GAT: Explainable Semantic Pose Estimation using Learned Graph
Attention
- Title(参考訳): sem-gat:学習グラフによる意味的ポーズ推定
- Authors: Efimia Panagiotaki, Daniele De Martini, Georgi Pramatarov, Matthew
Gadd, Lars Kunze
- Abstract要約: 本稿では,信頼度の高いポイントクラウド登録候補の識別を導くために,意味論と局所幾何学を利用したグラフニューラルネットワーク(GNN)に基づく手法を提案する。
環境のセマンティックおよび形態学的特徴は、登録のための重要な基準点として機能し、正確なライダーベースのポーズ推定を可能にする。
提案手法をKITTIオドメトリデータセット上でテストし,ベンチマーク手法と比較して競合精度が向上し,より少ないネットワークパラメータに依存しながら,トラックのスムーズさが向上した。
- 参考スコア(独自算出の注目度): 10.883346969896621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a Graph Neural Network(GNN)-based method for exploiting
semantics and local geometry to guide the identification of reliable pointcloud
registration candidates. Semantic and morphological features of the environment
serve as key reference points for registration, enabling accurate lidar-based
pose estimation. Our novel lightweight static graph structure informs our
attention-based node aggregation network by identifying semantic-instance
relationships, acting as an inductive bias to significantly reduce the
computational burden of pointcloud registration. By connecting candidate nodes
and exploiting cross-graph attention, we identify confidence scores for all
potential registration correspondences and estimate the displacement between
pointcloud scans. Our pipeline enables introspective analysis of the model's
performance by correlating it with the individual contributions of local
structures in the environment, providing valuable insights into the system's
behaviour. We test our method on the KITTI odometry dataset, achieving
competitive accuracy compared to benchmark methods and a higher track
smoothness while relying on significantly fewer network parameters.
- Abstract(参考訳): 本稿では,semantics と local geometry を利用したグラフニューラルネットワーク(gnn)を用いた,信頼性の高いpointcloud登録候補の同定手法を提案する。
環境の意味的および形態的特徴は、登録のための重要な基準点となり、lidarに基づく正確なポーズ推定を可能にする。
提案する軽量静的グラフ構造は,セマンティクス・インスタンス関係を同定し,ポイントクラウド登録の計算負荷を大幅に軽減するインダクティブバイアスとして機能することにより,注意に基づくノードアグリゲーションネットワークに通知する。
候補ノードを接続し,クロスグラフアテンションを利用することにより,すべての潜在的登録対応に対する信頼スコアを特定し,ポイントクラウドスキャン間の変位を推定する。
私たちのパイプラインは、環境内のローカルな構造の個々のコントリビューションと相関し、システムの振る舞いに関する貴重な洞察を提供することで、モデルのパフォーマンスのイントロスペクティブ分析を可能にします。
提案手法をkitti odometryデータセット上でテストし,ベンチマーク法と比較し,ネットワークパラメータをかなり少なくしつつ,高いトラックスムース性を実現する。
関連論文リスト
- Revisiting Neighborhood Aggregation in Graph Neural Networks for Node Classification using Statistical Signal Processing [4.184419714263417]
グラフニューラルネットワーク(GNN)の基本構成要素である近傍集約の概念を再評価する。
本分析では,エッジ独立ノードラベルの仮定の下での動作において,特定のベンチマークGNNモデル内の概念的欠陥を明らかにする。
論文 参考訳(メタデータ) (2024-07-21T22:37:24Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - Pose-Graph Attentional Graph Neural Network for Lidar Place Recognition [16.391871270609055]
本稿では,P-GATと呼ばれるポーズグラフ注目グラフニューラルネットワークを提案する。
位置認識タスクのシーケンシャルと非シーケンシャルなサブグラフのキーノードを比較する。
P-GATは、近隣の雲記述子間の最大空間情報と時間情報を使用する。
論文 参考訳(メタデータ) (2023-08-31T23:17:44Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
分散ディープラーニングのためのグラフベースパーソナライズアルゴリズム(GATTA)を提案する。
特に、各エージェントのパーソナライズされたモデルは、グローバルな部分とノード固有の部分で構成される。
グラフ内の各エージェントを1つのノードとして扱うことにより、ノード固有のパラメータを特徴として扱うことにより、グラフアテンション機構の利点を継承することができる。
論文 参考訳(メタデータ) (2023-05-22T13:48:30Z) - BS-GAT Behavior Similarity Based Graph Attention Network for Network
Intrusion Detection [20.287285893803244]
本稿では,グラフアテンションネットワークを用いた行動類似性(BS-GAT)に基づくグラフニューラルネットワークアルゴリズムを提案する。
その結果,提案手法は有効であり,既存のソリューションと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-04-07T09:42:07Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor
Points [15.953570826460869]
2つの画像間の密接な対応を確立することは、基本的なコンピュータビジョンの問題である。
我々は、アンカーポイントに条件付きグラフ構造化ニューラルネットワークを用いたDense対応学習のための新しいソリューションであるDenseGAPを紹介する。
提案手法は,ほとんどのベンチマークにおいて対応学習の最先端化を図っている。
論文 参考訳(メタデータ) (2021-12-13T18:59:30Z) - Mutually exciting point process graphs for modelling dynamic networks [0.0]
相互励起点過程グラフ(MEG)と呼ばれる動的ネットワークのための新しいモデルのクラスが提案される。
MEGは、Dyadicマーク付きポイントプロセスのためのスケーラブルなネットワークワイド統計モデルであり、異常検出に使用できる。
このモデルはシミュレーショングラフと実世界のコンピュータネットワークデータセット上でテストされ、優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-11T10:14:55Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。