論文の概要: The Copycat Perceptron: Smashing Barriers Through Collective Learning
- arxiv url: http://arxiv.org/abs/2308.03743v1
- Date: Mon, 7 Aug 2023 17:51:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 12:35:10.202427
- Title: The Copycat Perceptron: Smashing Barriers Through Collective Learning
- Title(参考訳): Copycatのパーセプトロン:集団学習でバリアを壊す
- Authors: Giovanni Catania, Aur\'elien Decelle, and Beatriz Seoane
- Abstract要約: 教師-学生シナリオにおける$y$結合二元パーセプトロンモデルの平衡特性を特徴づける。
本研究では,各生徒の一般化性能に影響を及ぼす熱雑音が存在するような,より一般的な環境を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We characterize the equilibrium properties of a model of $y$ coupled binary
perceptrons in the teacher-student scenario, subject to a suitable learning
rule, with an explicit ferromagnetic coupling proportional to the Hamming
distance between the students' weights. In contrast to recent works, we analyze
a more general setting in which a thermal noise is present that affects the
generalization performance of each student. Specifically, in the presence of a
nonzero temperature, which assigns nonzero probability to configurations that
misclassify samples with respect to the teacher's prescription, we find that
the coupling of replicas leads to a shift of the phase diagram to smaller
values of $\alpha$: This suggests that the free energy landscape gets smoother
around the solution with good generalization (i.e., the teacher) at a fixed
fraction of reviewed examples, which allows local update algorithms such as
Simulated Annealing to reach the solution before the dynamics gets frozen.
Finally, from a learning perspective, these results suggest that more students
(in this case, with the same amount of data) are able to learn the same rule
when coupled together with a smaller amount of data.
- Abstract(参考訳): 教師/学生のシナリオにおいて, 学生の重み間のハミング距離に比例した強磁性結合を, 適切な学習規則を条件として, $y$結合二元パーセプトロンのモデルの平衡特性を特徴づける。
最近の研究とは対照的に、各学生の一般化性能に影響を与える熱雑音が存在するというより一般的な設定を解析する。
Specifically, in the presence of a nonzero temperature, which assigns nonzero probability to configurations that misclassify samples with respect to the teacher's prescription, we find that the coupling of replicas leads to a shift of the phase diagram to smaller values of $\alpha$: This suggests that the free energy landscape gets smoother around the solution with good generalization (i.e., the teacher) at a fixed fraction of reviewed examples, which allows local update algorithms such as Simulated Annealing to reach the solution before the dynamics gets frozen.
最後に、学習の観点から、これらの結果は、より多くの学生(この場合、同じ量のデータを持つ)が、少量のデータと組み合わせることで、同じルールを学習できることを示唆している。
関連論文リスト
- CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
本研究では,試料内およびサンプル間制約によるサンプルワイドアライメント問題として定式化できる,対照的な知識蒸留手法を提案する。
本手法は, 数値を考慮し, 同一試料中のロジット差を最小化する。
CIFAR-100, ImageNet-1K, MS COCOの3つのデータセットについて総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-22T11:52:40Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
ラベルに関連付けられた用語への分散の解釈可能で対称的な分解について述べる。
バイアスはネットワーク幅とともに単調に減少するが、分散項は非単調な振る舞いを示す。
我々はまた、著しく豊かな現象論も分析する。
論文 参考訳(メタデータ) (2020-11-04T21:04:02Z) - Extreme Memorization via Scale of Initialization [72.78162454173803]
我々は,初期化の規模を変えることが,SGDによって誘導される暗黙の正規化に強く影響を与える実験装置を構築する。
一般化能力に影響を及ぼす範囲と方法が、使用したアクティベーションと損失関数に依存することがわかった。
均質なReLU活性化の場合、この挙動は損失関数に起因することが示される。
論文 参考訳(メタデータ) (2020-08-31T04:53:11Z) - Structure Learning in Inverse Ising Problems Using $\ell_2$-Regularized
Linear Estimator [8.89493507314525]
モデルミスマッチにも拘わらず,正則化を伴わずに線形回帰を用いてネットワーク構造を完璧に識別できることを示す。
本稿では,2段階推定器を提案する。第1段階では隆起回帰を用い,比較的小さな閾値で推算を行う。
適切な正規化係数としきい値を持つ推定器は、0M/N1$でもネットワーク構造の完全同定を実現する。
論文 参考訳(メタデータ) (2020-08-19T09:11:33Z) - Making Coherence Out of Nothing At All: Measuring the Evolution of
Gradient Alignment [15.2292571922932]
本研究では,トレーニング中のサンプルごとの勾配のアライメントを実験的に研究するための新しい指標(m$-coherence)を提案する。
我々は、$m$-coherenceがより解釈可能で、$O(m2)$ではなく$O(m)$で計算し、数学的にクリーンであることを示します。
論文 参考訳(メタデータ) (2020-08-03T21:51:24Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。