Nest-DGIL: Nesterov-optimized Deep Geometric Incremental Learning for CS
Image Reconstruction
- URL: http://arxiv.org/abs/2308.03807v2
- Date: Thu, 12 Oct 2023 03:36:17 GMT
- Title: Nest-DGIL: Nesterov-optimized Deep Geometric Incremental Learning for CS
Image Reconstruction
- Authors: Xiaohong Fan, Yin Yang, Ke Chen, Yujie Feng, and Jianping Zhang
- Abstract summary: We propose a deep geometric incremental learning framework based on the second Nesterov proximal gradient optimization.
Our reconstruction framework is decomposed into four modules including general linear reconstruction, cascade geometric incremental restoration, Nesterov acceleration, and post-processing.
- Score: 9.54126979075279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proximal gradient-based optimization is one of the most common strategies to
solve inverse problem of images, and it is easy to implement. However, these
techniques often generate heavy artifacts in image reconstruction. One of the
most popular refinement methods is to fine-tune the regularization parameter to
alleviate such artifacts, but it may not always be sufficient or applicable due
to increased computational costs. In this work, we propose a deep geometric
incremental learning framework based on the second Nesterov proximal gradient
optimization. The proposed end-to-end network not only has the powerful
learning ability for high-/low-frequency image features, but also can
theoretically guarantee that geometric texture details will be reconstructed
from preliminary linear reconstruction. Furthermore, it can avoid the risk of
intermediate reconstruction results falling outside the geometric decomposition
domains and achieve fast convergence. Our reconstruction framework is
decomposed into four modules including general linear reconstruction, cascade
geometric incremental restoration, Nesterov acceleration, and post-processing.
In the image restoration step, a cascade geometric incremental learning module
is designed to compensate for missing texture information from different
geometric spectral decomposition domains. Inspired by the overlap-tile
strategy, we also develop a post-processing module to remove the block effect
in patch-wise-based natural image reconstruction. All parameters in the
proposed model are learnable, an adaptive initialization technique of physical
parameters is also employed to make model flexibility and ensure converging
smoothly. We compare the reconstruction performance of the proposed method with
existing state-of-the-art methods to demonstrate its superiority. Our source
codes are available at https://github.com/fanxiaohong/Nest-DGIL.
Related papers
- AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction [7.04200827802994]
Differentiable formulation of fan-beam CT reconstruction is extended to acquisition geometry.
As a proof-of-concept experiment, this idea is applied to rigid motion compensation.
Algorithm achieves a reduction in MSE by 35.5 % and an improvement in SSIM by 12.6 % over the motion affected reconstruction.
arXiv Detail & Related papers (2022-12-05T11:18:52Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Deep Geometric Distillation Network for Compressive Sensing MRI [4.294819237410758]
Compressed sensing (CS) is an efficient method to reconstruct MR image from small sampled data in $k$-space.
We propose a novel deep geometric distillation network which combines the merits of model-based and deep learning-based CS-MRI methods.
arXiv Detail & Related papers (2021-07-11T02:24:55Z) - Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction [4.2476585678737395]
We propose a general learning based framework for solving nonsmooth non image reconstruction problems.
We show that the proposed is-efficient convergence state-of-the-art methods in an image problems in training.
arXiv Detail & Related papers (2020-07-22T07:59:07Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Consistent Video Depth Estimation [57.712779457632024]
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.
We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.
Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion.
arXiv Detail & Related papers (2020-04-30T17:59:26Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2020-03-29T17:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.