論文の概要: Real-time Strawberry Detection Based on Improved YOLOv5s Architecture
for Robotic Harvesting in open-field environment
- arxiv url: http://arxiv.org/abs/2308.03998v4
- Date: Thu, 12 Oct 2023 11:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 15:05:52.719479
- Title: Real-time Strawberry Detection Based on Improved YOLOv5s Architecture
for Robotic Harvesting in open-field environment
- Title(参考訳): オープンフィールド環境におけるロボットハーベスティングのための改良型YOLOv5sアーキテクチャに基づくリアルタイムイチゴ検出
- Authors: Zixuan He (1)(2), Salik Ram Khanal (1)(2), Xin Zhang (3), Manoj Karkee
(1)(2), Qin Zhang (1)(2) ((1) Center for Precision and Automated Agricultural
Systems, Washington State University, (2) Department of Biological Systems
Engineering, Washington State University, (3) Department of Agricultural and
Biological Engineering, Mississippi State University)
- Abstract要約: 本研究では, 屋外環境下でイチゴを検出するために, YOLOv5を用いたカスタムオブジェクト検出モデルを提案する。
最も高い平均精度は80.3%であり、提案されたアーキテクチャを用いて達成された。
このモデルは、リアルタイムのイチゴ検出とロボットピッキングのローカライズに十分高速である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposed a YOLOv5-based custom object detection model to detect
strawberries in an outdoor environment. The original architecture of the
YOLOv5s was modified by replacing the C3 module with the C2f module in the
backbone network, which provided a better feature gradient flow. Secondly, the
Spatial Pyramid Pooling Fast in the final layer of the backbone network of
YOLOv5s was combined with Cross Stage Partial Net to improve the generalization
ability over the strawberry dataset in this study. The proposed architecture
was named YOLOv5s-Straw. The RGB images dataset of the strawberry canopy with
three maturity classes (immature, nearly mature, and mature) was collected in
open-field environment and augmented through a series of operations including
brightness reduction, brightness increase, and noise adding. To verify the
superiority of the proposed method for strawberry detection in open-field
environment, four competitive detection models (YOLOv3-tiny, YOLOv5s,
YOLOv5s-C2f, and YOLOv8s) were trained, and tested under the same computational
environment and compared with YOLOv5s-Straw. The results showed that the
highest mean average precision of 80.3% was achieved using the proposed
architecture whereas the same was achieved with YOLOv3-tiny, YOLOv5s,
YOLOv5s-C2f, and YOLOv8s were 73.4%, 77.8%, 79.8%, 79.3%, respectively.
Specifically, the average precision of YOLOv5s-Straw was 82.1% in the immature
class, 73.5% in the nearly mature class, and 86.6% in the mature class, which
were 2.3% and 3.7%, respectively, higher than that of the latest YOLOv8s. The
model included 8.6*10^6 network parameters with an inference speed of 18ms per
image while the inference speed of YOLOv8s had a slower inference speed of
21.0ms and heavy parameters of 11.1*10^6, which indicates that the proposed
model is fast enough for real time strawberry detection and localization for
the robotic picking.
- Abstract(参考訳): 本研究では、屋外環境下でイチゴを検知するYOLOv5を用いたカスタムオブジェクト検出モデルを提案する。
YOLOv5sの当初のアーキテクチャは、C3モジュールをバックボーンネットワークのC2fモジュールに置き換えることで変更され、より優れた機能勾配フローを提供した。
第2に, YOLOv5sのバックボーンネットワークの最終層における空間ピラミッドのポーリング速度をクロスステージ部分ネットと組み合わせて, イチゴデータセットの一般化能力を向上した。
提案されたアーキテクチャはYOLOv5s-Strawと名付けられた。
3つの成熟度クラス(未熟、ほぼ成熟、成熟)を持つイチゴキャノピーのrgb画像データセットは、オープンフィールド環境で収集され、輝度の低下、輝度の増大、ノイズの追加を含む一連の操作によって拡張された。
オープンフィールド環境におけるイチゴ検出手法の優位性を検証するため、4つの競合検出モデル(YOLOv3-tiny, YOLOv5s, YOLOv5s-C2f, YOLOv8s)をトレーニングし、同じ計算環境下でテストし、YOLOv5s-Strawと比較した。
その結果、平均平均精度は80.3%で、yolov3-tiny、yolov5s、yolov5s-c2f、yolov8では73.4%、77.8%、79.8%、79.3%であった。
具体的には、YOLOv5s-Strawの平均精度は未熟なクラスで82.1%、ほぼ成熟したクラスで73.5%、成熟したクラスで86.6%であり、それぞれ2.3%と3.7%であった。
モデルには8.6*10^6のネットワークパラメータがあり、1画像あたりの推論速度は18msであり、yolov8の推論速度は21.0ms、重いパラメータは11.1*10^6であった。
関連論文リスト
- Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors [0.0]
本研究では,YOLOv3から最新のYOLO11まで,YOLO(You Only Look Once)アルゴリズムのベンチマーク解析を行った。
トラフィックシグネチャ(さまざまなオブジェクトサイズを持つ)、アフリカ野生生物(多彩なアスペクト比と画像当たりのオブジェクトの少なくとも1つのインスタンス)、および船と船舶(単一のクラスの小さなオブジェクトを持つ)の3つの多様なデータセットでパフォーマンスを評価する。
論文 参考訳(メタデータ) (2024-10-31T20:45:00Z) - YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning [0.4143603294943439]
商業用果樹果樹における未熟リンゴ(フルーツレット)の3次元ポーズ推定法を開発した。
YOLO11オブジェクト検出とポーズ推定アルゴリズムとViT(Vision Transformers)を併用して深度推定を行う。
YOLO11nは、ボックス精度と精度の点で、YOLO11とYOLOv8のすべての構成を上回った。
論文 参考訳(メタデータ) (2024-10-21T17:00:03Z) - Performance Evaluation of YOLOv8 Model Configurations, for Instance Segmentation of Strawberry Fruit Development Stages in an Open Field Environment [0.0]
本研究では, オープンフィールド環境下でイチゴを熟成・未熟成段階に分割するためのYOLOv8モデル構成の性能評価を行った。
YOLOv8nモデルは、平均平均精度 (mAP) が80.9%と優れたセグメンテーション精度を示し、他のYOLOv8構成よりも優れていた。
論文 参考訳(メタデータ) (2024-08-11T00:33:45Z) - Quantizing YOLOv7: A Comprehensive Study [0.0]
本稿では,最先端のYOLOv7モデルの事前学習重みに対する様々な量子化スキームの有効性について検討する。
その結果、4ビット量子化と異なる粒度の組合せを組み合わせることで、均一な量子化と非一様量子化のための3.92倍と3.86倍のメモリ節約が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-06T03:23:04Z) - Spatial Annealing Smoothing for Efficient Few-shot Neural Rendering [106.0057551634008]
我々は,Spatial Annealing smoothing regularized NeRF (SANeRF) という,正確で効率的な数発のニューラルレンダリング手法を導入する。
単に1行のコードを追加することで、SANeRFは現在の数ショットのNeRF法と比較して、より優れたレンダリング品質とはるかに高速な再構築速度を提供する。
論文 参考訳(メタデータ) (2024-06-12T02:48:52Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
オープン語彙検出機能でYOLOを強化する革新的なアプローチであるYOLO-Worldを紹介する。
提案手法は,ゼロショット方式で広範囲の物体を高効率で検出する。
YOLO-WorldはV100上で52.0 FPSの35.4 APを達成した。
論文 参考訳(メタデータ) (2024-01-30T18:59:38Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの仕事は、他のYOLOモデルのプラグイン・アンド・プレイ・モジュールとしても使えます。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - YOLOv6 v3.0: A Full-Scale Reloading [9.348857966505111]
ネットワークアーキテクチャとトレーニングスキームに関して,多数の新たな拡張を施したYOLOv6を更新する。
YOLOv6-Nは、NVIDIA Tesla T4 GPUでテストされた1187 FPSのスループットでCOCOデータセットで37.5%APに達した。
YOLOv6-Sは484 FPSで45.0%のAPを攻撃し、他の主流検出器よりも高速である。
論文 参考訳(メタデータ) (2023-01-13T14:46:46Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。