AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
- URL: http://arxiv.org/abs/2308.04026v1
- Date: Tue, 8 Aug 2023 03:59:28 GMT
- Title: AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
- Authors: Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqiuyue Ping, Qin
Chen
- Abstract summary: Existing evaluation methods suffer from following shortcomings: (1) constrained evaluation abilities, (2) vulnerable benchmarks, (3) unobjective metrics.
We suggest that task-based evaluation, where LLM agents complete tasks in a simulated environment, is a one-for-all solution to solve above problems.
AgentSims is an easy-to-use infrastructure for researchers from all disciplines to test the specific capacities they are interested in.
- Score: 9.156652770482268
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With ChatGPT-like large language models (LLM) prevailing in the community,
how to evaluate the ability of LLMs is an open question. Existing evaluation
methods suffer from following shortcomings: (1) constrained evaluation
abilities, (2) vulnerable benchmarks, (3) unobjective metrics. We suggest that
task-based evaluation, where LLM agents complete tasks in a simulated
environment, is a one-for-all solution to solve above problems. We present
AgentSims, an easy-to-use infrastructure for researchers from all disciplines
to test the specific capacities they are interested in. Researchers can build
their evaluation tasks by adding agents and buildings on an interactive GUI or
deploy and test new support mechanisms, i.e. memory, planning and tool-use
systems, by a few lines of codes. Our demo is available at
https://agentsims.com .
Related papers
- MemSim: A Bayesian Simulator for Evaluating Memory of LLM-based Personal Assistants [64.41695570145673]
We propose MemSim, a Bayesian simulator designed to automatically construct reliable questions and answers (QAs) from generated user messages.
Based on MemSim, we generate a dataset in the daily-life scenario, named MemDaily, and conduct extensive experiments to assess the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-30T10:19:04Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
arXiv Detail & Related papers (2024-07-18T00:58:41Z) - GTA: A Benchmark for General Tool Agents [32.443456248222695]
We design 229 real-world tasks and executable tool chains to evaluate mainstream large language models (LLMs)
Our findings show that real-world user queries are challenging for existing LLMs, with GPT-4 completing less than 50% of the tasks and most LLMs achieving below 25%.
This evaluation reveals the bottlenecks in the tool-use capabilities of current LLMs in real-world scenarios, which provides future direction for advancing general-purpose tool agents.
arXiv Detail & Related papers (2024-07-11T17:50:09Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - A Preliminary Study on Using Large Language Models in Software
Pentesting [2.0551676463612636]
Large language models (LLM) are perceived to offer promising potentials for automating security tasks.
We investigate the use of LLMs in software pentesting, where the main task is to automatically identify software security vulnerabilities in source code.
arXiv Detail & Related papers (2024-01-30T21:42:59Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks.
Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation.
arXiv Detail & Related papers (2024-01-21T23:36:14Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Attributed Question Answering: Evaluation and Modeling for Attributed
Large Language Models [68.37431984231338]
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision.
We believe the ability of an LLM to an attribute to the text that it generates is likely to be crucial for both system developers and users in this setting.
arXiv Detail & Related papers (2022-12-15T18:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.