MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
- URL: http://arxiv.org/abs/2407.18961v3
- Date: Thu, 15 Aug 2024 21:32:57 GMT
- Title: MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
- Authors: Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang Kong, Aonan Zhang, Dian Ang Yap, Yizhe zhang, Karsten Ahnert, Vik Kamath, Mathias Berglund, Dominic Walsh, Tobias Gindele, Juergen Wiest, Zhengfeng Lai, Xiaoming Wang, Jiulong Shan, Meng Cao, Ruoming Pang, Zirui Wang,
- Abstract summary: Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
- Score: 54.117238759317004
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics, and covers five essential capabilities: Understanding, Reasoning, Planning, Problem-solving, and Self-correction. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/tree/main/docs/research/mmau.
Related papers
- Infinite Retrieval: Attention Enhanced LLMs in Long-Context Processing [19.577278316436807]
Large Language Models (LLMs) are limited by the context window size.
We propose a novel method that leverages the LLMs's own attention information to enable accurate retrieval.
InfiniRetri achieves 100% accuracy in the Needle-In-a-Haystack(NIH) test over 1M tokens using a 0.5B parameter model.
arXiv Detail & Related papers (2025-02-18T15:45:36Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.
LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.
Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents [57.4686961979566]
EmbodiedEval is a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks.
It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity.
We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks.
arXiv Detail & Related papers (2025-01-21T03:22:10Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.
It is constructed using a dataset curated from 30 well-known GitHub repositories.
We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - ML Research Benchmark [0.0]
We present the ML Research Benchmark (MLRB), comprising 7 competition-level tasks derived from recent machine learning conference tracks.
This paper introduces a novel benchmark and evaluates it using agent scaffolds powered by frontier models, including Claude-3 and GPT-4o.
The results indicate that the Claude-3.5 Sonnet agent performs best across our benchmark, excelling in planning and developing machine learning models.
arXiv Detail & Related papers (2024-10-29T21:38:42Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Towards leveraging LLMs for Conditional QA [1.9649272351760063]
This study delves into the capabilities and limitations of Large Language Models (LLMs) in the challenging domain of conditional question-answering.
Our findings reveal that fine-tuned LLMs can surpass the state-of-the-art (SOTA) performance in some cases, even without fully encoding all input context.
These models encounter challenges in extractive question answering, where they lag behind the SOTA by over 10 points, and in mitigating the risk of injecting false information.
arXiv Detail & Related papers (2023-12-02T14:02:52Z) - Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks.
To address this gap, a new form of Question-Answering (QA) task, termed Reasoning with Redundant Information Provided (RRIP), is introduced.
This study evaluates two popular LLMs, LlaMA2-13B-chat and generative pre-trained transformer 3.5 (GPT-3.5), contrasting their performance on traditional QA tasks against RRIP tasks.
arXiv Detail & Related papers (2023-10-06T06:20:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.