Class-level Structural Relation Modelling and Smoothing for Visual
Representation Learning
- URL: http://arxiv.org/abs/2308.04142v1
- Date: Tue, 8 Aug 2023 09:03:46 GMT
- Title: Class-level Structural Relation Modelling and Smoothing for Visual
Representation Learning
- Authors: Zitan Chen, Zhuang Qi, Xiao Cao, Xiangxian Li, Xiangxu Meng, Lei Meng
- Abstract summary: This paper presents a framework termed bfClass-level Structural Relation Modeling and Smoothing for Visual Representation Learning (CSRMS)
It includes the Class-level Relation Modelling, Class-aware GraphGuided Sampling, and Graph-Guided Representation Learning modules.
Experiments demonstrate the effectiveness of structured knowledge modelling for enhanced representation learning and show that CSRMS can be incorporated with any state-of-the-art visual representation learning models for performance gains.
- Score: 12.247343963572732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning for images has been advanced by recent progress in
more complex neural models such as the Vision Transformers and new learning
theories such as the structural causal models. However, these models mainly
rely on the classification loss to implicitly regularize the class-level data
distributions, and they may face difficulties when handling classes with
diverse visual patterns. We argue that the incorporation of the structural
information between data samples may improve this situation. To achieve this
goal, this paper presents a framework termed \textbf{C}lass-level Structural
Relation Modeling and Smoothing for Visual Representation Learning (CSRMS),
which includes the Class-level Relation Modelling, Class-aware Graph Sampling,
and Relational Graph-Guided Representation Learning modules to model a
relational graph of the entire dataset and perform class-aware smoothing and
regularization operations to alleviate the issue of intra-class visual
diversity and inter-class similarity. Specifically, the Class-level Relation
Modelling module uses a clustering algorithm to learn the data distributions in
the feature space and identify three types of class-level sample relations for
the training set; Class-aware Graph Sampling module extends typical training
batch construction process with three strategies to sample dataset-level
sub-graphs; and Relational Graph-Guided Representation Learning module employs
a graph convolution network with knowledge-guided smoothing operations to ease
the projection from different visual patterns to the same class. Experiments
demonstrate the effectiveness of structured knowledge modelling for enhanced
representation learning and show that CSRMS can be incorporated with any
state-of-the-art visual representation learning models for performance gains.
The source codes and demos have been released at
https://github.com/czt117/CSRMS.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Sub-Graph Learning for Spatiotemporal Forecasting via Knowledge
Distillation [22.434970343698676]
We present a new framework called KD-SGL to effectively learn the sub-graphs.
We define one global model to learn the overall structure of the graph and multiple local models for each sub-graph.
arXiv Detail & Related papers (2022-11-17T18:02:55Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.