Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion
- URL: http://arxiv.org/abs/2408.04339v1
- Date: Thu, 8 Aug 2024 09:49:26 GMT
- Title: Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion
- Authors: Xiaoyang Ji, Yuchen Zhou, Haofu Yang, Shiyue Xu, Jiahao Li,
- Abstract summary: We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
- Score: 15.293684479404092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering, a classical task in graph learning, involves partitioning the nodes of a graph into distinct clusters. This task has applications in various real-world scenarios, such as anomaly detection, social network analysis, and community discovery. Current graph clustering methods commonly rely on module pre-training to obtain a reliable prior distribution for the model, which is then used as the optimization objective. However, these methods often overlook deeper supervised signals, leading to sub-optimal reliability of the prior distribution. To address this issue, we propose a novel deep graph clustering method called CGCN. Our approach introduces contrastive signals and deep structural information into the pre-training process. Specifically, CGCN utilizes a contrastive learning mechanism to foster information interoperability among multiple modules and allows the model to adaptively adjust the degree of information aggregation for different order structures. Our CGCN method has been experimentally validated on multiple real-world graph datasets, showcasing its ability to boost the dependability of prior clustering distributions acquired through pre-training. As a result, we observed notable enhancements in the performance of the model.
Related papers
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - CGC: Contrastive Graph Clustering for Community Detection and Tracking [33.48636823444052]
We develop CGC, a novel end-to-end framework for graph clustering.
CGC learns node embeddings and cluster assignments in a contrastive graph learning framework.
We extend CGC for time-evolving data, where temporal graph clustering is performed in an incremental learning fashion.
arXiv Detail & Related papers (2022-04-05T17:34:47Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.