Breaking Speaker Recognition with PaddingBack
- URL: http://arxiv.org/abs/2308.04179v2
- Date: Mon, 11 Mar 2024 05:16:03 GMT
- Title: Breaking Speaker Recognition with PaddingBack
- Authors: Zhe Ye, Diqun Yan, Li Dong, Kailai Shen,
- Abstract summary: Recent research has shown that speech backdoors can utilize transformations as triggers, similar to image backdoors.
We propose PaddingBack, an inaudible backdoor attack that utilizes malicious operations to generate poisoned samples.
- Score: 18.219474338850787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning as a Service (MLaaS) has gained popularity due to advancements in Deep Neural Networks (DNNs). However, untrusted third-party platforms have raised concerns about AI security, particularly in backdoor attacks. Recent research has shown that speech backdoors can utilize transformations as triggers, similar to image backdoors. However, human ears can easily be aware of these transformations, leading to suspicion. In this paper, we propose PaddingBack, an inaudible backdoor attack that utilizes malicious operations to generate poisoned samples, rendering them indistinguishable from clean ones. Instead of using external perturbations as triggers, we exploit the widely-used speech signal operation, padding, to break speaker recognition systems. Experimental results demonstrate the effectiveness of our method, achieving a significant attack success rate while retaining benign accuracy. Furthermore, PaddingBack demonstrates the ability to resist defense methods and maintain its stealthiness against human perception.
Related papers
- Imperceptible Rhythm Backdoor Attacks: Exploring Rhythm Transformation for Embedding Undetectable Vulnerabilities on Speech Recognition [4.164975438207411]
In recent years, the typical backdoor attacks have been researched in speech recognition systems.
The attacker adds some incorporated changes to benign speech spectrograms or changes the speech components, such as pitch and timbre.
To improve the stealthiness of data poisoning, we propose a non-neural and fast algorithm called Random Spectrogram Rhythm Transformation.
arXiv Detail & Related papers (2024-06-16T13:29:21Z) - Towards Stealthy Backdoor Attacks against Speech Recognition via
Elements of Sound [9.24846124692153]
Deep neural networks (DNNs) have been widely and successfully adopted and deployed in various applications of speech recognition.
In this paper, we revisit poison-only backdoor attacks against speech recognition.
We exploit elements of sound ($e.g.$, pitch and timbre) to design more stealthy yet effective poison-only backdoor attacks.
arXiv Detail & Related papers (2023-07-17T02:58:25Z) - Fake the Real: Backdoor Attack on Deep Speech Classification via Voice
Conversion [14.264424889358208]
This work explores a backdoor attack that utilizes sample-specific triggers based on voice conversion.
Specifically, we adopt a pre-trained voice conversion model to generate the trigger, ensuring that the poisoned samples does not introduce any additional audible noise.
arXiv Detail & Related papers (2023-06-28T02:19:31Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution [57.51117978504175]
Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks.
Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated.
We present invisible backdoors that are activated by a learnable combination of word substitution.
arXiv Detail & Related papers (2021-06-11T13:03:17Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.