Semantic Interpretation and Validation of Graph Attention-based
Explanations for GNN Models
- URL: http://arxiv.org/abs/2308.04220v2
- Date: Fri, 20 Oct 2023 20:13:51 GMT
- Title: Semantic Interpretation and Validation of Graph Attention-based
Explanations for GNN Models
- Authors: Efimia Panagiotaki, Daniele De Martini, Lars Kunze
- Abstract summary: We propose a methodology for investigating the use of semantic attention to enhance the explainability of Graph Neural Network (GNN)-based models.
Our work extends existing attention-based graph explainability methods by analysing the divergence in the attention distributions in relation to semantically sorted feature sets.
We apply our methodology on a lidar pointcloud estimation model successfully identifying key semantic classes that contribute to enhanced performance.
- Score: 9.260186030255081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a methodology for investigating the use of semantic
attention to enhance the explainability of Graph Neural Network (GNN)-based
models. Graph Deep Learning (GDL) has emerged as a promising field for tasks
like scene interpretation, leveraging flexible graph structures to concisely
describe complex features and relationships. As traditional explainability
methods used in eXplainable AI (XAI) cannot be directly applied to such
structures, graph-specific approaches are introduced. Attention has been
previously employed to estimate the importance of input features in GDL,
however, the fidelity of this method in generating accurate and consistent
explanations has been questioned. To evaluate the validity of using attention
weights as feature importance indicators, we introduce semantically-informed
perturbations and correlate predicted attention weights with the accuracy of
the model. Our work extends existing attention-based graph explainability
methods by analysing the divergence in the attention distributions in relation
to semantically sorted feature sets and the behaviour of a GNN model,
efficiently estimating feature importance. We apply our methodology on a lidar
pointcloud estimation model successfully identifying key semantic classes that
contribute to enhanced performance, effectively generating reliable post-hoc
semantic explanations.
Related papers
- GraphGI:A GNN Explanation Method using Game Interaction [5.149896909638598]
Graph Neural Networks (GNNs) have garnered significant attention and have been extensively utilized across various domains.
Current graph explanation techniques focus on identifying key nodes or edges, attributing the critical data features that drive model predictions.
We propose a novel explanatory method GraphGI, which identifies the coalition with the highest interaction strength and presents it as an explanatory subgraph.
arXiv Detail & Related papers (2024-09-24T03:24:31Z) - Kolmogorov-Arnold Graph Neural Networks [2.4005219869876453]
Graph neural networks (GNNs) excel in learning from network-like data but often lack interpretability.
We propose the Graph Kolmogorov-Arnold Network (GKAN) to enhance both accuracy and interpretability.
arXiv Detail & Related papers (2024-06-26T13:54:59Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - Factorized Explainer for Graph Neural Networks [7.382632811417645]
Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data.
Post-hoc instance-level explanation methods have been proposed to understand GNN predictions.
We introduce a novel factorized explanation model with theoretical performance guarantees.
arXiv Detail & Related papers (2023-12-09T15:29:45Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
We introduce CAR, a general-purpose regularization framework for graph attention networks.
Methodname aligns the attention mechanism with the causal effects of active interventions on graph connectivity.
For social media network-sized graphs, a CAR-guided graph rewiring approach could allow us to combine the scalability of graph convolutional methods with the higher performance of graph attention.
arXiv Detail & Related papers (2022-10-20T01:29:10Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.