Person Re-Identification without Identification via Event Anonymization
- URL: http://arxiv.org/abs/2308.04402v4
- Date: Thu, 17 Aug 2023 23:00:58 GMT
- Title: Person Re-Identification without Identification via Event Anonymization
- Authors: Shafiq Ahmad, Pietro Morerio, Alessio Del Bue
- Abstract summary: Deep learning has been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications.
We propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId.
- Score: 23.062038973576296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wide-scale use of visual surveillance in public spaces puts individual
privacy at stake while increasing resource consumption (energy, bandwidth, and
computation). Neuromorphic vision sensors (event-cameras) have been recently
considered a valid solution to the privacy issue because they do not capture
detailed RGB visual information of the subjects in the scene. However, recent
deep learning architectures have been able to reconstruct images from event
cameras with high fidelity, reintroducing a potential threat to privacy for
event-based vision applications. In this paper, we aim to anonymize
event-streams to protect the identity of human subjects against such image
reconstruction attacks. To achieve this, we propose an end-to-end network
architecture jointly optimized for the twofold objective of preserving privacy
and performing a downstream task such as person ReId. Our network learns to
scramble events, enforcing the degradation of images recovered from the privacy
attacker. In this work, we also bring to the community the first ever
event-based person ReId dataset gathered to evaluate the performance of our
approach. We validate our approach with extensive experiments and report
results on the synthetic event data simulated from the publicly available
SoftBio dataset and our proposed Event-ReId dataset.
Related papers
- Region of Interest Loss for Anonymizing Learned Image Compression [3.0936354370614607]
We show how to achieve sufficient anonymization such that human faces become unrecognizable while persons are kept detectable.
This approach enables compression and anonymization in one step on the capture device, instead of transmitting sensitive, nonanonymized data over the network.
arXiv Detail & Related papers (2024-06-09T10:36:06Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Privacy-Preserving Representations are not Enough -- Recovering Scene
Content from Camera Poses [63.12979986351964]
Existing work on privacy-preserving localization aims to defend against an attacker who has access to a cloud-based service.
We show that an attacker can learn about details of a scene without any access by simply querying a localization service.
arXiv Detail & Related papers (2023-05-08T10:25:09Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
This paper studies a novel privacy-preserving anonymization problem for pedestrian images.
It preserves personal identity information (PII) for authorized models and prevents PII from being recognized by third parties.
We propose a joint learning reversible anonymization framework, which can reversibly generate full-body anonymous images.
arXiv Detail & Related papers (2022-07-24T07:04:16Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Privacy-preserving Object Detection [52.77024349608834]
We show that for object detection on COCO, both anonymizing the dataset by blurring faces, as well as swapping faces in a balanced manner along the gender and skin tone dimension, can retain object detection performances while preserving privacy and partially balancing bias.
arXiv Detail & Related papers (2021-03-11T10:34:54Z) - CIAGAN: Conditional Identity Anonymization Generative Adversarial
Networks [12.20367903755194]
CIAGAN is a model for image and video anonymization based on conditional generative adversarial networks.
Our model is able to remove the identifying characteristics of faces and bodies while producing high-quality images and videos.
arXiv Detail & Related papers (2020-05-19T15:56:08Z) - Privacy-Preserving Image Classification in the Local Setting [17.375582978294105]
Local Differential Privacy (LDP) brings us a promising solution, which allows the data owners to randomly perturb their input to provide the plausible deniability of the data before releasing.
In this paper, we consider a two-party image classification problem, in which data owners hold the image and the untrustworthy data user would like to fit a machine learning model with these images as input.
We propose a supervised image feature extractor, DCAConv, which produces an image representation with scalable domain size.
arXiv Detail & Related papers (2020-02-09T01:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.