AnonyNoise: Anonymizing Event Data with Smart Noise to Outsmart Re-Identification and Preserve Privacy
- URL: http://arxiv.org/abs/2411.16440v1
- Date: Mon, 25 Nov 2024 14:43:03 GMT
- Title: AnonyNoise: Anonymizing Event Data with Smart Noise to Outsmart Re-Identification and Preserve Privacy
- Authors: Katharina Bendig, René Schuster, Nicole Thiemer, Karen Joisten, Didier Stricker,
- Abstract summary: Event cameras were initially considered as a promising solution since their output is sparse and difficult for humans to interpret.
Recent advances in deep learning proof that neural networks are able to reconstruct high-quality grayscale images and re-identify individuals using data from event cameras.
We present the first event anonymization pipeline to prevent re-identification not only by humans but also by neural networks.
- Score: 12.130336423803328
- License:
- Abstract: The increasing capabilities of deep neural networks for re-identification, combined with the rise in public surveillance in recent years, pose a substantial threat to individual privacy. Event cameras were initially considered as a promising solution since their output is sparse and therefore difficult for humans to interpret. However, recent advances in deep learning proof that neural networks are able to reconstruct high-quality grayscale images and re-identify individuals using data from event cameras. In our paper, we contribute a crucial ethical discussion on data privacy and present the first event anonymization pipeline to prevent re-identification not only by humans but also by neural networks. Our method effectively introduces learnable data-dependent noise to cover personally identifiable information in raw event data, reducing attackers' re-identification capabilities by up to 60%, while maintaining substantial information for the performing of downstream tasks. Moreover, our anonymization generalizes well on unseen data and is robust against image reconstruction and inversion attacks. Code: https://github.com/dfki-av/AnonyNoise
Related papers
- Region of Interest Loss for Anonymizing Learned Image Compression [3.0936354370614607]
We show how to achieve sufficient anonymization such that human faces become unrecognizable while persons are kept detectable.
This approach enables compression and anonymization in one step on the capture device, instead of transmitting sensitive, nonanonymized data over the network.
arXiv Detail & Related papers (2024-06-09T10:36:06Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
Video anomaly detection (VAD) without human monitoring is a complex computer vision task.
Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information.
We propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner.
arXiv Detail & Related papers (2023-08-21T22:42:55Z) - Person Re-Identification without Identification via Event Anonymization [23.062038973576296]
Deep learning has been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications.
We propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId.
arXiv Detail & Related papers (2023-08-08T17:04:53Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
We propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners.
Experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets.
arXiv Detail & Related papers (2022-12-04T08:49:14Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
This paper studies a novel privacy-preserving anonymization problem for pedestrian images.
It preserves personal identity information (PII) for authorized models and prevents PII from being recognized by third parties.
We propose a joint learning reversible anonymization framework, which can reversibly generate full-body anonymous images.
arXiv Detail & Related papers (2022-07-24T07:04:16Z) - Syfer: Neural Obfuscation for Private Data Release [58.490998583666276]
We develop Syfer, a neural obfuscation method to protect against re-identification attacks.
Syfer composes trained layers with random neural networks to encode the original data.
It maintains the ability to predict diagnoses from the encoded data.
arXiv Detail & Related papers (2022-01-28T20:32:04Z) - Domain Adaptive Egocentric Person Re-identification [10.199631830749839]
Person re-identification (re-ID) in first-person (egocentric) vision is a fairly new and unexplored problem.
With the increase of wearable video recording devices, egocentric data becomes readily available.
There is a significant lack of large scale structured egocentric datasets for person re-identification.
arXiv Detail & Related papers (2021-03-08T16:19:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.