How to harness high-dimensional temporal entanglement, using limited
interferometry setups
- URL: http://arxiv.org/abs/2308.04422v1
- Date: Tue, 8 Aug 2023 17:44:43 GMT
- Title: How to harness high-dimensional temporal entanglement, using limited
interferometry setups
- Authors: Alexandra Bergmayr, Florian Kanitschar, Matej Pivoluska, Marcus Huber
- Abstract summary: We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-dimensional entanglement has shown to have significant advantages in
quantum communication. It is available in many degrees of freedom and in
particular in the time-domain routinely produced in down-conversion (SPDC).
While advantageous in the sense that only a single detector channel is needed
locally, it is notoriously hard to analyze, especially in an assumption-free
manner that is required for quantum key distribution applications. We develop
the first complete analysis of high-dimensional entanglement in the
polarization-time-domain and show how to efficiently certify relevant density
matrix elements and security parameters for Quantum Key Distribution (QKD). In
addition to putting past experiments on rigorous footing, we also develop
physical noise models and propose a novel setup that can further enhance the
noise resistance of free-space quantum communication.
Related papers
- Collective quantum enhancement in critical quantum sensing [37.69303106863453]
We show that collective quantum advantage can be achieved with a multipartite critical quantum sensor based on a parametrically coupled Kerr resonators chain.
We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system.
We evaluate the scaling of the quantum Fisher information with respect to fundamental resources, and find that the critical chain achieves a quadratic enhancement in the number of resonators.
arXiv Detail & Related papers (2024-07-25T14:08:39Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - The ideal wavelength for daylight free-space quantum key distribution [35.310629519009204]
We model a satellite-to-ground quantum channel for different quantum light sources to identify the optimal wavelength for free-space QKD in ambient conditions.
Our results can be applied in roof-to-roof scenarios and are therefore relevant for near-future quantum networks.
arXiv Detail & Related papers (2023-03-03T17:49:31Z) - Critical quantum sensing based on the Jaynes-Cummings model with a
squeezing drive [6.284204043713657]
Quantum sensing improves the accuracy of measurements of relevant parameters by exploiting the unique properties of quantum systems.
In this work, we explore an alternative to construct the analog of the QRM for the sensing, exploiting the criticality appearing in the Jaynes-Cummings (JC) model whose bosonic field is parametrically driven.
arXiv Detail & Related papers (2022-12-21T04:40:34Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Long-range Ising interactions mediated by $\lambda\phi^4$ fields:
probing the renormalisation of sound in crystals of trapped ions [0.0]
Self-interacting scalar quantum field theory can be mapped onto a collection of multipartite-entangled two-level sensors.
We show in this work that using always-on harmonic sources can simplify substantially the sensing protocol.
In a specific regime, the effective real-time dynamics of the quantum sensors can be described by a quantum Ising model with long-range couplings.
arXiv Detail & Related papers (2021-05-14T15:16:27Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Engineering Dynamical Sweet Spots to Protect Qubits from 1/$f$ Noise [0.08388591755871733]
We develop a protocol for engineering dynamical sweet spots which reduce the susceptibility of a qubit to low-frequency noise.
Our work provides an intuitive tool to encode quantum information in robust, time-dependent states.
arXiv Detail & Related papers (2020-04-26T19:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.