Detecting high-dimensional time-bin entanglement in fiber-loop systems
- URL: http://arxiv.org/abs/2502.18336v1
- Date: Tue, 25 Feb 2025 16:27:45 GMT
- Title: Detecting high-dimensional time-bin entanglement in fiber-loop systems
- Authors: Niklas Euler, Monika Monika, Ulf Peschel, Martin Gärttner,
- Abstract summary: High-dimensional entanglement has been shown to be more robust to noise and enables higher secret-key rates.<n>We develop a method for certifying high-dimensional time-bin entanglement in fiber-loop systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum communication protocols rely on the distribution of entanglement between the different participating parties. One example is quantum key distribution (QKD), an application that has matured to commercial use in recent years. However, difficulties remain, especially with noise resilience and channel capacity in long-distance communication. One way to overcome these problems is to use high-dimensional entanglement, which has been shown to be more robust to noise and enables higher secret-key rates. It is therefore important to have access to certifiable high-dimensional entanglement sources to confidently implement these advanced QKD protocols. Here, we develop a method for certifying high-dimensional time-bin entanglement in fiber-loop systems. In these systems, entanglement creation and detection can utilize the same physical components, and the number of time bins, and thus the entanglement dimension, can be adapted without making physical changes to the setup. Our certification method builds on previous proposals for the certification of angular-momentum entanglement in photon pairs. In particular, measurements in only two experimentally accessible bases are sufficient to obtain a lower bound on the entanglement dimension for both two- and multiphoton quantum states. Numerical simulations show that the method is robust against typical experimental noise effects and works well even with limited measurement statistics, thus establishing time-bin encoded photons as a promising platform for high-dimensional quantum-communication protocols.
Related papers
- A robust approach for time-bin encoded photonic quantum information protocols [0.0]
Quantum states encoded in the time-bin degree of freedom of photons represent a fundamental resource for quantum information protocols.
Traditional methods for generating and measuring time-bin encoded quantum states face severe challenges due to optical instabilities, complex setups, and timing resolution requirements.
We propose a robust and scalable protocol to generate and measure high-dimensional time-bin quantum states in a single spatial mode.
arXiv Detail & Related papers (2024-04-24T18:00:54Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum time transfer: a practical method for lossy and noisy channels [0.0]
This article explores the utility of low-performance quantum-photon sources for quantum networking.
It provides picosecond-level timing precision even under high loss and high noise channel conditions representative of daytime space-Earth links.
This method is relevant for daytime space-Earth quantum networking and/or providing high-precision secure timing in GPS denied environments.
arXiv Detail & Related papers (2022-11-01T20:33:52Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - High-Dimensional Entanglement for Quantum Communication in the Frequency
Domain [0.0]
High-dimensional photonic entanglement is a promising candidate for error-protected quantum information processing.
This study shows how to harness the large frequency-entanglement inherent in standard continuous-wave spontaneous down-conversion processes.
arXiv Detail & Related papers (2022-06-02T10:08:28Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum key distribution overcoming extreme noise: simultaneous subspace
coding using high-dimensional entanglement [0.12233362977312945]
We show that it is possible to exploit noisy high-dimensional entanglement for quantum key distribution.
Our protocol can be used to establish a secret key even in extremely noisy experimental conditions.
arXiv Detail & Related papers (2020-04-27T14:07:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.