論文の概要: Anonymizing Speech: Evaluating and Designing Speaker Anonymization
Techniques
- arxiv url: http://arxiv.org/abs/2308.04455v2
- Date: Mon, 4 Sep 2023 10:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 03:34:00.395140
- Title: Anonymizing Speech: Evaluating and Designing Speaker Anonymization
Techniques
- Title(参考訳): 音声の匿名化:話者匿名化手法の評価と設計
- Authors: Pierre Champion
- Abstract要約: 音声ユーザインタフェースの利用が増加し、音声データの収集と保存が急増した。
本論文は、音声の匿名化と匿名化の程度を評価するためのソリューションを提案する。
- 参考スコア(独自算出の注目度): 1.2691047660244337
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The growing use of voice user interfaces has led to a surge in the collection
and storage of speech data. While data collection allows for the development of
efficient tools powering most speech services, it also poses serious privacy
issues for users as centralized storage makes private personal speech data
vulnerable to cyber threats. With the increasing use of voice-based digital
assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the
increasing ease with which personal speech data can be collected, the risk of
malicious use of voice-cloning and speaker/gender/pathological/etc. recognition
has increased.
This thesis proposes solutions for anonymizing speech and evaluating the
degree of the anonymization. In this work, anonymization refers to making
personal speech data unlinkable to an identity while maintaining the usefulness
(utility) of the speech signal (e.g., access to linguistic content). We start
by identifying several challenges that evaluation protocols need to consider to
evaluate the degree of privacy protection properly. We clarify how
anonymization systems must be configured for evaluation purposes and highlight
that many practical deployment configurations do not permit privacy evaluation.
Furthermore, we study and examine the most common voice conversion-based
anonymization system and identify its weak points before suggesting new methods
to overcome some limitations. We isolate all components of the anonymization
system to evaluate the degree of speaker PPI associated with each of them.
Then, we propose several transformation methods for each component to reduce as
much as possible speaker PPI while maintaining utility. We promote
anonymization algorithms based on quantization-based transformation as an
alternative to the most-used and well-known noise-based approach. Finally, we
endeavor a new attack method to invert anonymization.
- Abstract(参考訳): 音声ユーザインタフェースの利用が増加し、音声データの収集と保存が急増した。
データ収集は、ほとんどの音声サービスを支える効率的なツールの開発を可能にするが、集中ストレージが個人の音声データをサイバー脅威に脆弱にするため、ユーザーにとって深刻なプライバシー問題を引き起こす。
AmazonのAlexa、GoogleのHome、AppleのSiriといった音声ベースのデジタルアシスタントの利用が増加し、パーソナル音声データの収集が容易になったことで、音声クローズとスピーカー/ジェンダー/病理/etcの悪意ある使用のリスクが高まった。
認識が高まりました
本論文は,音声の匿名化と匿名化の程度を評価するための解を提案する。
本研究において、匿名化とは、音声信号(例えば、言語コンテンツへのアクセス)の有用性(有効性)を維持しつつ、個人音声データをアイデンティティーと結びつかないものにすることを指す。
まず、評価プロトコルがプライバシー保護の程度を適切に評価するために考慮する必要があるいくつかの課題を特定することから始める。
評価のために匿名化システムをどのように構成するかを明確にし、多くの実用的なデプロイメント構成ではプライバシ評価が許されていないことを強調する。
さらに,最も一般的な音声変換に基づく匿名化システムについて検討し,いくつかの制限を克服するための新しい手法を提案する前に,その弱点を特定する。
匿名化システムのすべてのコンポーネントを分離し、各コンポーネントに関連付けられた話者PPIの度合いを評価する。
次に,各コンポーネントに対して,実用性を維持しながら話者ppiを可能な限り削減するための変換手法を提案する。
我々は、量子化に基づく変換に基づく匿名化アルゴリズムを、最もよく使われ、よく知られたノイズベースアプローチの代替として推奨する。
最後に,匿名化を回避すべく,新たな攻撃手法を提案する。
関連論文リスト
- Asynchronous Voice Anonymization Using Adversarial Perturbation On Speaker Embedding [46.25816642820348]
我々は、人間の知覚を維持しながら、音声認識に対して音声属性を変更することに重点を置いている。
話者ゆがみ機構を組み込んだ音声生成フレームワークを用いて匿名化音声を生成する。
LibriSpeechデータセットで行った実験では、話者の属性は、その人の知覚が処理された発話の60.71%で保存されていることが判明した。
論文 参考訳(メタデータ) (2024-06-12T13:33:24Z) - Evaluation of Speaker Anonymization on Emotional Speech [9.223908421919733]
音声データには、話者のアイデンティティや感情状態など、さまざまな個人情報が含まれている。
最近の研究は、音声のプライバシーを守るという話題に対処している。
VoicePrivacy 2020 Challenge(VPC)は、話者の匿名化に関するものだ。
論文 参考訳(メタデータ) (2023-04-15T20:50:29Z) - Anonymizing Speech with Generative Adversarial Networks to Preserve
Speaker Privacy [22.84840887071428]
話者匿名化は、音声録音における音声を変化させることで話者の同一性を隠蔽することを目的としている。
これは一般的に、個人の保護とダウンストリームアプリケーションにおけるデータのユーザビリティとの間の、プライバシーとユーティリティのトレードオフが伴う。
本稿では,ワッサースタイン距離をコスト関数として生成した逆数ネットワークを用いて話者埋め込みを生成することで,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-10-13T13:12:42Z) - Differentially Private Speaker Anonymization [44.90119821614047]
実世界の発話を共有することが、音声ベースのサービスのトレーニングと展開の鍵となる。
話者匿名化は、言語的および韻律的属性をそのまま残しながら、発話から話者情報を除去することを目的としている。
言語的属性と韻律的属性は依然として話者情報を含んでいる。
論文 参考訳(メタデータ) (2022-02-23T23:20:30Z) - Protecting gender and identity with disentangled speech representations [49.00162808063399]
音声における性情報保護は,話者識別情報のモデル化よりも効果的であることを示す。
性別情報をエンコードし、2つの敏感な生体識別子を解読する新しい方法を提示する。
論文 参考訳(メタデータ) (2021-04-22T13:31:41Z) - High Fidelity Speech Regeneration with Application to Speech Enhancement [96.34618212590301]
本稿では,24khz音声をリアルタイムに生成できる音声のwav-to-wav生成モデルを提案する。
音声変換法に着想を得て,音源の同一性を保ちながら音声特性を増強する訓練を行った。
論文 参考訳(メタデータ) (2021-01-31T10:54:27Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
本稿では,対人訓練とオートエンコーダに基づく話者識別システムを提案する。
実験結果から, 対向学習とオートエンコーダを組み合わせることで, 話者検証システムの誤り率が同等になることがわかった。
論文 参考訳(メタデータ) (2020-11-09T19:22:05Z) - Speaker anonymisation using the McAdams coefficient [19.168733328810962]
本稿では,既存の手法とは異なり,トレーニングデータを必要としない匿名化アプローチについて報告する。
提案手法は,McAdams係数を用いて音声信号のスペクトル包絡を変換する。
結果は、ランダムに最適化された変換が匿名化の点で競合する解より優れていることを示している。
論文 参考訳(メタデータ) (2020-11-02T17:07:17Z) - Design Choices for X-vector Based Speaker Anonymization [48.46018902334472]
第1回VoicePrivacy Challengeのベースラインとして,フレキシブルな擬似話者選択手法を提案する。
LibriSpeechから派生したデータセットを使用して実験を行い、プライバシとユーティリティの観点から設計選択の最適な組み合わせを見つける。
論文 参考訳(メタデータ) (2020-05-18T11:32:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。