Absorption to Fluctuating Bunching States in Non-Unitary Boson Dynamics
- URL: http://arxiv.org/abs/2308.04716v2
- Date: Mon, 8 Jan 2024 04:40:48 GMT
- Title: Absorption to Fluctuating Bunching States in Non-Unitary Boson Dynamics
- Authors: Ken Mochizuki and Ryusuke Hamazaki
- Abstract summary: We show that noisy nonunitary dynamics of bosons drives arbitrary initial states into a novel fluctuating bunching state, where all bosons occupy one time-dependent mode.
We argue that the times of relaxation obey a universal power law as functions of the noise parameter in generic noisy nonunitary dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that noisy nonunitary dynamics of bosons drives arbitrary initial
states into a novel fluctuating bunching state, where all bosons occupy one
time-dependent mode. We propose a concept of the noisy spectral gap, a
generalization of the spectral gap in noiseless systems, and demonstrate that
the exponentially fast absorption to the fluctuating bunching state takes place
asymptotically. The fluctuating bunching state is unique to noisy nonunitary
dynamics, with no counterpart in any unitary dynamics and nonunitary dynamics
described by a time-independent generator. We also argue that the times of
relaxation to the fluctuating bunching state obey a universal power law as
functions of the noise parameter in generic noisy nonunitary dynamics.
Related papers
- Dynamical generation of geometric squeezing in interacting Bose-Einstein condensates [21.448766267828294]
We study the geometrically squeezed state of Bose-Einstein condensates (BECs)<n>For interacting BECs with two-body collisions, a similar quench only results in quantum fluctuations oscillating periodically without squeezing.<n>By strategically breaking the stability criteria, we propose a dynamical approach for generating squeezing that can exponentially suppress quantum fluctuations in a relatively short time.
arXiv Detail & Related papers (2025-08-06T06:50:03Z) - Persistent subradiant correlations in a random driven Dicke model [49.1574468325115]
We study theoretically the driven-dissipative dynamics of an array of two-level emitters, coupled to a single photonic mode, in the presence of disorder in the resonant frequencies.<n>We introduce the notion of subradiant correlations in the dynamics, corresponding to the eigenstates of the Liouvillian with a low decay rate, that can also oscillate in time.
arXiv Detail & Related papers (2025-07-25T17:53:56Z) - Unveiling coherent dynamics in non-Markovian open quantum systems: exact expression and recursive perturbation expansion [44.99833362998488]
We introduce a systematic framework to derive the effective Hamiltonian governing the coherent dynamics of non-Markovian open quantum systems.<n>Applying our framework to paradigmatic spin systems, we reveal how environmental correlations influence energy shifts and eigenbasis rotations.
arXiv Detail & Related papers (2025-06-04T15:55:22Z) - Quantum Dynamics with Stochastic Non-Hermitian Hamiltonians [0.0]
We study the quantum dynamics generated by a non-Hermitian Hamiltonian subject to perturbations in its anti-Hermitian part.
We characterize the resulting state evolution and analyze its purity.
arXiv Detail & Related papers (2024-07-10T15:17:34Z) - Slow relaxation of quasi-periodically driven integrable quantum many-body systems [14.37149160708975]
We study the emergence and stability of a prethermal phase in an integrable many-body system subjected to a Fibonacci drive.
In spite of the breakdown of an effective Hamiltonian in the perturbative analysis, we still observe slow logarithmic heating time-scales, unlike purely random drives.
arXiv Detail & Related papers (2024-04-10T00:48:00Z) - Observation of dynamic non-Hermitian skin effects [14.653357833352828]
We report the first experimental observation of rich non-Hermitian skin dynamics using tunable one-dimensional nonreciprocal double-chain mechanical systems.
Remarkably, dynamic NHSEs are observed with various dynamic behaviors in different dynamic phases.
Our findings unveil the fundamental aspects and open a new pathway toward non-Hermitian dynamics.
arXiv Detail & Related papers (2023-12-10T01:44:59Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Dephasing and pseudo-coherent quantum dynamics in super-Ohmic
environments [0.0]
We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics of a quantum two-state system.
Super-Ohmic purely dephasing fluctuations strongly suppress the amplitude of coherent dynamics at very short times.
The according phase separation line shows also a non-monotonous behaviour, very similar to the pseudo-coherent dynamics.
arXiv Detail & Related papers (2023-03-31T17:11:03Z) - Dynamical Degeneracy Splitting and Directional Invisibility in
Non-Hermitian Systems [17.001487000146863]
We introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems.
We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous at given frequency, leading to uneven broadening in spectral function and anomalous scattering.
arXiv Detail & Related papers (2022-11-14T22:35:42Z) - Prethermalization in periodically-driven nonreciprocal many-body spin
systems [0.0]
We analyze a new class of time-periodic nonreciprocal dynamics in interacting chaotic classical spin systems.
We find that the magnetization dynamics features a long-lived metastable plateau, whose duration is controlled by the fourth power of the drive frequency.
We extend the notion of prethermal dynamics, observed in the high-frequency limit of periodically-driven systems, to nonreciprocal systems.
arXiv Detail & Related papers (2022-08-18T18:00:15Z) - Non-Hermitian skin effect and self-acceleration [0.0]
Non-Hermitian systems exhibit nontrivial band topology and a strong sensitivity of the energy spectrum on the boundary conditions.
A macroscopic number of bulk states get squeezed toward the lattice edges under open boundary conditions, an effect dubbed the non-Hermitian skin effect (NHSE)
Here we unravel a different dynamical signature of the NHSE in real space that manifests itself in the em early-time dynamics of the system, namely self-acceleration of the wave function.
arXiv Detail & Related papers (2022-06-22T04:29:08Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Prethermalization and entanglement dynamics in interacting topological
pumps [0.0]
We investigate the formation of quasisteady states in one-dimensional pumps of interacting fermions at non-integer filling fraction.
Potential disorder reduces the amplitude of fluctuations of the quasisteady state current around its universal value.
The lifetime of the quasisteady state remains nearly unaffected for disorder strengths up to the scale of the single-particle band gap.
arXiv Detail & Related papers (2021-03-29T18:00:01Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.