Generalized Unbiased Scene Graph Generation
- URL: http://arxiv.org/abs/2308.04802v2
- Date: Tue, 16 Jul 2024 04:53:47 GMT
- Title: Generalized Unbiased Scene Graph Generation
- Authors: Xinyu Lyu, Lianli Gao, Junlin Xie, Pengpeng Zeng, Yulu Tian, Jie Shao, Heng Tao Shen,
- Abstract summary: Generalized Unbiased Scene Graph Generation (G-USGG) takes into account both predicate-level and concept-level imbalance.
We propose the Multi-Concept Learning (MCL) framework, which ensures a balanced learning process across rare/ uncommon/ common concepts.
- Score: 85.22334551067617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Unbiased Scene Graph Generation (USGG) methods only focus on addressing the predicate-level imbalance that high-frequency classes dominate predictions of rare ones, while overlooking the concept-level imbalance. Actually, even if predicates themselves are balanced, there is still a significant concept-imbalance within them due to the long-tailed distribution of contexts (i.e., subject-object combinations). This concept-level imbalance poses a more pervasive and challenging issue compared to the predicate-level imbalance since subject-object pairs are inherently complex in combinations. Hence, we introduce a novel research problem: Generalized Unbiased Scene Graph Generation (G-USGG), which takes into account both predicate-level and concept-level imbalance. To the end, we propose the Multi-Concept Learning (MCL) framework, which ensures a balanced learning process across rare/ uncommon/ common concepts. MCL first quantifies the concept-level imbalance across predicates in terms of different amounts of concepts, representing as multiple concept-prototypes within the same class. It then effectively learns concept-prototypes by applying the Concept Regularization (CR) technique. Furthermore, to achieve balanced learning over different concepts, we introduce the Balanced Prototypical Memory (BPM), which guides SGG models to generate balanced representations for concept-prototypes. Extensive experiments demonstrate the remarkable efficacy of our model-agnostic strategy in enhancing the performance of benchmark models on both VG-SGG and OI-SGG datasets, leading to new state-of-the-art achievements in two key aspects: predicate-level unbiased relation recognition and concept-level compositional generability.
Related papers
- LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
We introduce textttHi-CoDecomposition, a novel framework designed to enhance model interpretability through structured concept analysis.
Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process.
arXiv Detail & Related papers (2024-05-29T00:36:56Z) - MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
We argue that explanations lacking insights into the decision processes of low and mid-level features are neither fully faithful nor useful.
We propose a novel paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss.
arXiv Detail & Related papers (2024-04-13T11:13:56Z) - Rethinking Semi-Supervised Imbalanced Node Classification from
Bias-Variance Decomposition [18.3055496602884]
This paper introduces a new approach to address the issue of class imbalance in graph neural networks (GNNs) for learning on graph-structured data.
Our approach integrates imbalanced node classification and Bias-Variance Decomposition, establishing a theoretical framework that closely relates data imbalance to model variance.
arXiv Detail & Related papers (2023-10-28T17:28:07Z) - Towards Distribution-Agnostic Generalized Category Discovery [51.52673017664908]
Data imbalance and open-ended distribution are intrinsic characteristics of the real visual world.
We propose a Self-Balanced Co-Advice contrastive framework (BaCon)
BaCon consists of a contrastive-learning branch and a pseudo-labeling branch, working collaboratively to provide interactive supervision to resolve the DA-GCD task.
arXiv Detail & Related papers (2023-10-02T17:39:58Z) - Environment-Invariant Curriculum Relation Learning for Fine-Grained
Scene Graph Generation [66.62453697902947]
The scene graph generation (SGG) task is designed to identify the predicates based on the subject-object pairs.
We propose a novel Environment Invariant Curriculum Relation learning (EICR) method, which can be applied in a plug-and-play fashion to existing SGG methods.
arXiv Detail & Related papers (2023-08-07T03:56:15Z) - Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased
Scene Graph Generation [62.96628432641806]
Scene Graph Generation aims to first encode the visual contents within the given image and then parse them into a compact summary graph.
We first present a novel Stacked Hybrid-Attention network, which facilitates the intra-modal refinement as well as the inter-modal interaction.
We then devise an innovative Group Collaborative Learning strategy to optimize the decoder.
arXiv Detail & Related papers (2022-03-18T09:14:13Z) - Balancing Generalization and Specialization in Zero-shot Learning [80.7530875747194]
We propose an end-to-end network with balanced generalization and abilities, termed as BGSNet, to take advantage of both abilities.
A novel self-adjusting diversity loss is designed to optimize BSNet with less redundancy and more diversity.
Experiments on four benchmark datasets demonstrate our model's effectiveness.
arXiv Detail & Related papers (2022-01-06T08:04:27Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - CURI: A Benchmark for Productive Concept Learning Under Uncertainty [33.83721664338612]
We introduce a new few-shot, meta-learning benchmark, Compositional Reasoning Under Uncertainty (CURI)
CURI evaluates different aspects of productive and systematic generalization, including abstract understandings of disentangling, productive generalization, learning operations, variable binding, etc.
It also defines a model-independent "compositionality gap" to evaluate the difficulty of generalizing out-of-distribution along each of these axes.
arXiv Detail & Related papers (2020-10-06T16:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.