論文の概要: Towards General and Fast Video Derain via Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2308.05346v1
- Date: Thu, 10 Aug 2023 05:27:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 13:37:00.702957
- Title: Towards General and Fast Video Derain via Knowledge Distillation
- Title(参考訳): 知識蒸留による汎用・高速ビデオデレインを目指して
- Authors: Defang Cai, Pan Mu, Sixian Chan, Zhanpeng Shao, Cong Bai
- Abstract要約: 我々は知識蒸留(RRGNet)による一般ビデオデラインネットワークを提案する。
ビデオの時間情報をフル活用するフレームグルーピング方式のエンコーダデコーダネットワークを設計する。
ネットワークのデライン機能を強化するために,現在のモデルのために古いタスクからのデータを再生するためのレインレビューモジュールを設計する。
- 参考スコア(独自算出の注目度): 10.614356931086267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a common natural weather condition, rain can obscure video frames and thus
affect the performance of the visual system, so video derain receives a lot of
attention. In natural environments, rain has a wide variety of streak types,
which increases the difficulty of the rain removal task. In this paper, we
propose a Rain Review-based General video derain Network via knowledge
distillation (named RRGNet) that handles different rain streak types with one
pre-training weight. Specifically, we design a frame grouping-based
encoder-decoder network that makes full use of the temporal information of the
video. Further, we use the old task model to guide the current model in
learning new rain streak types while avoiding forgetting. To consolidate the
network's ability to derain, we design a rain review module to play back data
from old tasks for the current model. The experimental results show that our
developed general method achieves the best results in terms of running speed
and derain effect.
- Abstract(参考訳): 自然の気象条件として、雨はビデオフレームを曖昧にし、視覚システムの性能に影響を与える可能性があるため、ビデオデラインは多くの注目を集めている。
自然環境下では、雨は様々な種類があり、雨の除去作業の困難さを増大させる。
そこで,本研究では,雨のストレークタイプを1つの事前訓練重量で処理する知識蒸留(rrgnet)を用いた,雨レビューに基づく一般ビデオデラインネットワークを提案する。
具体的には,ビデオの時間情報をフル活用したフレームグルーピング方式のエンコーダデコーダネットワークを設計する。
さらに,過去のタスクモデルを用いて,新しい雨のストレークタイプを学習する際の現在のモデルをガイドする。
ネットワークのデランシング能力を統合するため,rain reviewモジュールを設計し,現在のモデルで古いタスクからデータを再生する。
実験の結果,本手法は走行速度とデライン効果の点で最高の結果が得られることがわかった。
関連論文リスト
- RainMamba: Enhanced Locality Learning with State Space Models for Video Deraining [14.025870185802463]
我々は,シーケンスレベルのローカル情報をよりよくキャプチャするための,新しいヒルベルト機構を備えた改良されたSSMベースのビデオデライニングネットワーク(RainMamba)を提案する。
また,提案したネットワークのパッチレベルの自己相似学習能力を高めるために,差分誘導動的コントラスト学習戦略を導入する。
論文 参考訳(メタデータ) (2024-07-31T17:48:22Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - Feature-Aligned Video Raindrop Removal with Temporal Constraints [68.49161092870224]
雨滴除去は、単一画像とビデオの両方において困難である。
熱帯雨林とは異なり、雨滴は複数のフレームで同じ地域を覆う傾向にある。
本手法では,2段階の降雨量除去手法を用いる。
論文 参考訳(メタデータ) (2022-05-29T05:42:14Z) - Semi-DRDNet Semi-supervised Detail-recovery Image Deraining Network via
Unpaired Contrastive Learning [59.22620253308322]
半教師付き詳細復元画像デラミニングネットワーク(セミDRDNet)を提案する。
半教師付き学習パラダイムとして、Semi-DRDNetは、強靭性と詳細な精度を犠牲にして、合成データと実世界の降雨データの両方を円滑に運用する。
論文 参考訳(メタデータ) (2022-04-06T12:35:27Z) - UnfairGAN: An Enhanced Generative Adversarial Network for Raindrop
Removal from A Single Image [8.642603456626391]
UnfairGANは、エッジや雨量推定といった事前の高レベル情報を活用することで、デライニング性能を向上させることができる、改良された生成的敵ネットワークである。
提案手法は, 定量的な計測値と視覚的品質に関する降雨量について, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:02:43Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
雨畳み込み辞書ネットワーク(RCDNet)と呼ばれる,新しい深層アーキテクチャを具体的に構築する。
RCDNetは雨害の本質的な先行を埋め込んでおり、明確な解釈性を持っている。
このような解釈可能なネットワークをエンドツーエンドにトレーニングすることにより、関連するすべてのレインカーネルと近位演算子を自動的に抽出することができる。
論文 参考訳(メタデータ) (2021-07-14T16:08:11Z) - Beyond Monocular Deraining: Parallel Stereo Deraining Network Via
Semantic Prior [103.49307603952144]
ほとんどの既存の脱雨アルゴリズムは単一の入力画像のみを使用し、クリーンな画像の復元を目指しています。
本稿では,ステレオ画像とセマンティック情報の両方を利用するPaired Rain Removal Network(PRRNet)を提案する。
単分子および新たに提案したステレオ降雨データセットの両方の実験により,提案手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2021-05-09T04:15:10Z) - Rain Streak Removal in a Video to Improve Visibility by TAWL Algorithm [12.056495277232118]
本研究では, 熱帯雨林の時間的外観, 広角形状, 相対的な位置に着目した3つの新しい抽出特徴を組み合わせる手法を提案する。
TAWL法では,異なる解像度とフレームレートの特徴を適応的に利用し,雨をリアルタイムに除去する。
実雨と合成雨の両方の映像シーケンスを用いて実験を行い, 提案手法の性能を関連する最先端手法と比較した。
論文 参考訳(メタデータ) (2020-07-10T05:07:59Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
降雨画像の劣化により、多くのコンピュータビジョンシステムが動作しないため、単一画像のデライン化は緊急の課題である。
本研究では, 物理モデルを用いた単一画像デライニングのための新しいネットワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T07:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。