論文の概要: Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2308.05379v4
- Date: Tue, 24 Oct 2023 08:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 23:54:31.210577
- Title: Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning
- Title(参考訳): セマンティックスを超えて:自己教師型学習による行動強化関連モデル学習
- Authors: Zeyuan Chen, Wei Chen, Jia Xu, Zhongyi Liu, Wei Zhang
- Abstract要約: 関連モデリングは、対応するクエリに対して望ましい項目を見つけることを目的としている。
ユーザの履歴行動データから抽出された補助的なクエリ-イテム相互作用は、ユーザの検索意図をさらに明らかにするためのヒントを提供する可能性がある。
本モデルでは, 隣接する視点と対象視点の両方から, 粗粒度および細粒度の意味表現を蒸留するための多レベルコアテンションを構築している。
- 参考スコア(独自算出の注目度): 25.356999988217325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relevance modeling aims to locate desirable items for corresponding queries,
which is crucial for search engines to ensure user experience. Although most
conventional approaches address this problem by assessing the semantic
similarity between the query and item, pure semantic matching is not
everything. In reality, auxiliary query-item interactions extracted from user
historical behavior data of the search log could provide hints to reveal users'
search intents further. Drawing inspiration from this, we devise a novel
Behavior Augmented Relevance Learning model for Alipay Search (BARL-ASe) that
leverages neighbor queries of target item and neighbor items of target query to
complement target query-item semantic matching. Specifically, our model builds
multi-level co-attention for distilling coarse-grained and fine-grained
semantic representations from both neighbor and target views. The model
subsequently employs neighbor-target self-supervised learning to improve the
accuracy and robustness of BARL-ASe by strengthening representation and logit
learning. Furthermore, we discuss how to deal with the long-tail query-item
matching of the mini apps search scenario of Alipay practically. Experiments on
real-world industry data and online A/B testing demonstrate our proposal
achieves promising performance with low latency.
- Abstract(参考訳): 関連モデリングは,検索エンジンがユーザエクスペリエンスを確保する上で重要な,対応するクエリに対して望ましい項目を見つけることを目的としている。
ほとんどの従来の手法では、クエリとアイテム間のセマンティックな類似性を評価することでこの問題に対処するが、純粋なセマンティックマッチングは、すべてではない。
実際、検索ログのユーザ履歴行動データから抽出された補助的なクエリ-イテム相互作用は、ユーザの検索意図をさらに明らかにするためのヒントを与えることができる。
そこで我々は,Alipay Search (BARL-ASe) のための新しい行動拡張関連学習モデルを提案し,ターゲットクエリの隣のクエリと隣のクエリの隣のクエリを利用して,ターゲットクエリと項目のセマンティックマッチングを補完する。
具体的には,隣接と対象の両方のビューから粗粒度および細粒度の意味表現を蒸留するマルチレベルコアテンションを構築した。
このモデルはその後,BARL-ASeの精度とロジット学習の強化により頑健性を向上させるために,隣接目標の自己教師型学習を採用する。
さらに、alipayのミニアプリの検索シナリオのロングテールクエリ項目マッチングを実際に扱う方法について論じる。
実業界データとオンラインa/bテストによる実験により,提案手法が低レイテンシで有望な性能を実現することを実証した。
関連論文リスト
- Query-oriented Data Augmentation for Session Search [71.84678750612754]
本稿では,検索ログの強化とモデリングの強化を目的としたクエリ指向データ拡張を提案する。
検索コンテキストの最も重要な部分を変更することで補足的なトレーニングペアを生成する。
我々は、現在のクエリを変更するためのいくつかの戦略を開発し、その結果、様々な難易度で新しいトレーニングデータを得る。
論文 参考訳(メタデータ) (2024-07-04T08:08:33Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
大規模言語モデルにおける長文文の活用について検討し,本書全体の読解データを作成する。
我々の目的は、長いテキストの詳細な理解を必要とする問題を分析し、理解し、推論するLLMの能力をテストすることである。
論文 参考訳(メタデータ) (2024-05-31T20:15:10Z) - Beyond Two-Tower Matching: Learning Sparse Retrievable
Cross-Interactions for Recommendation [80.19762472699814]
2-towerモデルは、産業アプリケーションに広くデプロイされている推奨のための一般的なマッチングフレームワークである。
機能間相互作用の制限と、オンラインサービスにおける精度の低下など、主な課題が2つある。
我々は,高度な機能相互作用だけでなく,効率的な検索もサポートするSparCodeという新しいマッチングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-30T03:13:36Z) - Semantic Equivalence of e-Commerce Queries [6.232692545488813]
本稿では,クエリの等価性を認識・活用し,検索とビジネスの成果を高めるためのフレームワークを提案する。
提案手法は,検索意図のベクトル表現へのクエリのマッピング,等価あるいは類似の意図を表現した近傍のクエリの特定,ユーザやビジネス目的の最適化という3つの重要な問題に対処する。
論文 参考訳(メタデータ) (2023-08-07T18:40:13Z) - Unified Embedding Based Personalized Retrieval in Etsy Search [0.42056926734482064]
グラフ, 変換器, 項ベース埋め込みを終末に組み込んだ統合埋め込みモデルを学習することを提案する。
我々のパーソナライズされた検索モデルは、検索購入率5.58%、サイト全体のコンバージョン率2.63%によって、検索体験を著しく改善する。
論文 参考訳(メタデータ) (2023-06-07T23:24:50Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Knowledge Guided Bidirectional Attention Network for Human-Object
Interaction Detection [3.0915392100355192]
HOIにおけるボトムアップ構文解析戦略の独立的利用は直感に反し、注意の拡散につながる可能性があると論じる。
HOIに新たな知識誘導型トップダウンアテンションを導入し、関係解析を「ルックアンドサーチ」プロセスとしてモデル化することを提案する。
一つのエンコーダ-デコーダモデルでボトムアップとトップダウンの注意を統一することで、プロセスを実装します。
論文 参考訳(メタデータ) (2022-07-16T16:42:49Z) - Approximate Nearest Neighbor Search under Neural Similarity Metric for
Large-Scale Recommendation [20.42993976179691]
本稿では,任意のマッチング関数にANN探索を拡張する新しい手法を提案する。
我々の主な考えは、すべての項目から構築された類似性グラフに一致する関数で、欲張りのウォークを実行することである。
提案手法は,Taobaoのディスプレイ広告プラットフォームに完全に展開されており,広告収入の大幅な増加をもたらす。
論文 参考訳(メタデータ) (2022-02-14T07:55:57Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
本稿では,RNN学習フレームワークとアテンションモデルからなる,スケーラブルなハイブリッド学習モデルを提案する。
新たな最適化のステップとして、1つのRNNパスに複数の短いユーザシーケンスをトレーニングバッチ内に収める。
また、マルチセッションパーソナライズされた検索ランキングにおける非政治強化学習の利用についても検討する。
論文 参考訳(メタデータ) (2022-02-01T06:52:40Z) - Adaptive Attentional Network for Few-Shot Knowledge Graph Completion [16.722373937828117]
Few-shot Knowledge Graph (KG) の完成は、現在の研究の焦点であり、各タスクは、数少ない参照エンティティペアを考えると、関係の見えない事実をクエリすることを目的としている。
最近の試みでは、エンティティと参照の静的表現を学習し、それらの動的特性を無視してこの問題を解決している。
本研究は,適応実体と参照表現を学習することにより,数ショットのKG補完のための適応的注意ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-19T16:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。