Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network
- URL: http://arxiv.org/abs/2308.05404v3
- Date: Wed, 26 Jun 2024 08:10:43 GMT
- Title: Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network
- Authors: Xianqiang Lyu, Junhui Hou,
- Abstract summary: This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
- Score: 52.77569396659629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel and interpretable end-to-end learning framework, called the deep compensation unfolding network (DCUNet), for restoring light field (LF) images captured under low-light conditions. DCUNet is designed with a multi-stage architecture that mimics the optimization process of solving an inverse imaging problem in a data-driven fashion. The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result. Additionally, DCUNet includes a content-associated deep compensation module at each optimization stage to suppress noise and illumination map estimation errors. To properly mine and leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module that comprehensively exploits redundant information in LF images. The experimental results on both simulated and real datasets demonstrate the superiority of our DCUNet over state-of-the-art methods, both qualitatively and quantitatively. Moreover, DCUNet preserves the essential geometric structure of enhanced LF images much better. The code will be publicly available at https://github.com/lyuxianqiang/LFLL-DCU.
Related papers
- CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - VQCNIR: Clearer Night Image Restoration with Vector-Quantized Codebook [16.20461368096512]
Night photography often struggles with challenges like low light and blurring, stemming from dark environments and prolonged exposures.
We believe in the strength of data-driven high-quality priors and strive to offer a reliable and consistent prior, circumventing the restrictions of manual priors.
We propose Clearer Night Image Restoration with Vector-Quantized Codebook (VQCNIR) to achieve remarkable and consistent restoration outcomes on real-world and synthetic benchmarks.
arXiv Detail & Related papers (2023-12-14T02:16:27Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - LRT: An Efficient Low-Light Restoration Transformer for Dark Light Field
Images [9.926231893220063]
Recent learning-based methods for low-light enhancement have their own disadvantages.
We propose an efficient Low-light Restoration Transformer (LRT) for LF images.
We show that our method can achieve superior performance on the restoration of extremely low-light and noisy LF images.
arXiv Detail & Related papers (2022-09-06T03:23:58Z) - Detail-Preserving Transformer for Light Field Image Super-Resolution [15.53525700552796]
We put forth a novel formulation built upon Transformers, by treating light field super-resolution as a sequence-to-sequence reconstruction task.
We propose a detail-preserving Transformer (termed as DPT), by leveraging gradient maps of light field to guide the sequence learning.
DPT consists of two branches, with each associated with a Transformer for learning from an original or gradient image sequence.
arXiv Detail & Related papers (2022-01-02T12:33:23Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses.
We propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input.
Our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
arXiv Detail & Related papers (2021-02-14T06:44:47Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution.
The high-dimensional spatiality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR.
We propose a novel learning-based LF framework, in which each view of an LF image is first individually super-resolved.
arXiv Detail & Related papers (2020-04-05T14:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.