CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2404.05253v2
- Date: Tue, 30 Apr 2024 09:18:59 GMT
- Title: CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
- Authors: Xu Wu, XianXu Hou, Zhihui Lai, Jie Zhou, Ya-nan Zhang, Witold Pedrycz, Linlin Shen,
- Abstract summary: Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
- Score: 97.95330185793358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations; (2) loss of texture and color information caused by noise suppression and light enhancement. In this paper, we propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement to address these challenges. In particular, we reframe LLIE as learning an image-to-code mapping from low-light images to discrete codebook, which has been learned from high-quality images. To enhance this process, a Semantic Embedding Module (SEM) is introduced to integrate semantic information with low-level features, and a Codebook Shift (CS) mechanism, designed to adapt the pre-learned codebook to better suit the distinct characteristics of our low-light dataset. Additionally, we present an Interactive Feature Transformation (IFT) module to refine texture and color information during image reconstruction, allowing for interactive enhancement based on user preferences. Extensive experiments on both real-world and synthetic benchmarks demonstrate that the incorporation of prior knowledge and controllable information transfer significantly enhances LLIE performance in terms of quality and fidelity. The proposed CodeEnhance exhibits superior robustness to various degradations, including uneven illumination, noise, and color distortion.
Related papers
- GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval [80.96706764868898]
We present a new Low-light Image Enhancement (LLIE) network via Generative LAtent feature based codebook REtrieval (GLARE)
We develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook.
Experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data.
arXiv Detail & Related papers (2024-07-17T09:40:15Z) - DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
arXiv Detail & Related papers (2024-05-21T16:01:13Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
Low-light image enhancement aims to improve the perception of images collected in dim environments.
Existing methods cannot adaptively extract the differentiated luminance information, which will easily cause over-exposure and under-exposure.
We propose a multi-scale attention Transformer named MSATr, which sufficiently extracts local and global features for light balance to improve the visual quality.
arXiv Detail & Related papers (2023-12-27T10:07:11Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
Self-Calibrated Illumination (SCI) is a strategy initially developed for RGB images.
We employ the SCI method to intensify and clarify details that are typically lost in low-light conditions.
This method of selective illumination enhancement leaves the color information intact, thus preserving the color integrity of the image.
arXiv Detail & Related papers (2023-12-23T08:49:19Z) - CDAN: Convolutional dense attention-guided network for low-light image enhancement [2.2530496464901106]
Low-light images pose challenges of diminished clarity, muted colors, and reduced details.
This paper introduces the Convolutional Dense Attention-guided Network (CDAN), a novel solution for enhancing low-light images.
CDAN integrates an autoencoder-based architecture with convolutional and dense blocks, complemented by an attention mechanism and skip connections.
arXiv Detail & Related papers (2023-08-24T16:22:05Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Learning Semantic-Aware Knowledge Guidance for Low-Light Image
Enhancement [69.47143451986067]
Low-light image enhancement (LLIE) investigates how to improve illumination and produce normal-light images.
The majority of existing methods improve low-light images via a global and uniform manner, without taking into account the semantic information of different regions.
We propose a novel semantic-aware knowledge-guided framework that can assist a low-light enhancement model in learning rich and diverse priors encapsulated in a semantic segmentation model.
arXiv Detail & Related papers (2023-04-14T10:22:28Z) - Invertible Network for Unpaired Low-light Image Enhancement [78.33382003460903]
We propose to leverage the invertible network to enhance low-light image in forward process and degrade the normal-light one inversely with unpaired learning.
In addition to the adversarial loss, we design various loss functions to ensure the stability of training and preserve more image details.
We present a progressive self-guided enhancement process for low-light images and achieve favorable performance against the SOTAs.
arXiv Detail & Related papers (2021-12-24T17:00:54Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.