論文の概要: Quality Diversity under Sparse Reward and Sparse Interaction:
Application to Grasping in Robotics
- arxiv url: http://arxiv.org/abs/2308.05483v2
- Date: Tue, 31 Oct 2023 10:15:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 01:51:23.212225
- Title: Quality Diversity under Sparse Reward and Sparse Interaction:
Application to Grasping in Robotics
- Title(参考訳): スパース・リワードとスパース・インタラクションによる品質多様性:ロボットのグラスピングへの応用
- Authors: J. Huber, F. H\'el\'enon, M. Coninx, F. Ben Amar, S. Doncieux
- Abstract要約: QD法(Quality-Diversity Method)は、与えられた問題に対して多種多様な高性能なソリューションセットを生成することを目的としたアルゴリズムである。
本研究は,ロボット工学における把握にQDがどう対処できるかを考察する。
ロボットグリップの2つの異なるセットアップと5つの標準オブジェクトに対応して、ドメインを10個把握する15の異なる方法の実験が行われた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quality-Diversity (QD) methods are algorithms that aim to generate a set of
diverse and high-performing solutions to a given problem. Originally developed
for evolutionary robotics, most QD studies are conducted on a limited set of
domains - mainly applied to locomotion, where the fitness and the behavior
signal are dense. Grasping is a crucial task for manipulation in robotics.
Despite the efforts of many research communities, this task is yet to be
solved. Grasping cumulates unprecedented challenges in QD literature: it
suffers from reward sparsity, behavioral sparsity, and behavior space
misalignment. The present work studies how QD can address grasping. Experiments
have been conducted on 15 different methods on 10 grasping domains,
corresponding to 2 different robot-gripper setups and 5 standard objects. An
evaluation framework that distinguishes the evaluation of an algorithm from its
internal components has also been proposed for a fair comparison. The obtained
results show that MAP-Elites variants that select successful solutions in
priority outperform all the compared methods on the studied metrics by a large
margin. We also found experimental evidence that sparse interaction can lead to
deceptive novelty. To our knowledge, the ability to efficiently produce
examples of grasping trajectories demonstrated in this work has no precedent in
the literature.
- Abstract(参考訳): QD法(Quality-Diversity Method)は、与えられた問題に対して多種多様な高性能なソリューションセットを生成することを目的としたアルゴリズムである。
もともと進化ロボティクスのために開発されたqd研究のほとんどは限られた領域で行われ、主に運動に応用され、フィットネスと行動信号が密集している。
グラッピングはロボットの操作にとって重要なタスクだ。
多くの研究コミュニティの努力にもかかわらず、この課題はまだ解決されていない。
グラッピングはQD文学における前例のない課題を累積し、報酬の幅、行動の幅、行動空間のずれに悩まされる。
本研究は,QDが把握にどう対処できるかを考察する。
2つの異なるロボットグリッパーと5つの標準オブジェクトに対応する10の把持領域に関する15の異なる方法に関する実験が行われた。
アルゴリズムと内部コンポーネントを区別する評価フレームワークも,公正な比較のために提案されている。
その結果, 提案手法を優先的に選択したMAP-Elites変種は, 比較手法の全てを大きなマージンで上回ることがわかった。
また,スパース相互作用が偽りの新規性をもたらすという実験的証拠も見いだした。
私たちの知識では,本研究で実証された把持軌跡の例を効率的に生成する能力は,文献に先例がない。
関連論文リスト
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Efficient Quality-Diversity Optimization through Diverse Quality Species [3.428706362109921]
我々は,アーカイブの必要をなくしたり,事前の動作範囲を定義したりすることなく,多様な解の集団を見つけることができることを示す。
本稿では,アーカイブベースの品質多様性(QD)アルゴリズムの代替として,DQS(Diverse Quality Species)を提案する。
論文 参考訳(メタデータ) (2023-04-14T23:15:51Z) - Assessing Quality-Diversity Neuro-Evolution Algorithms Performance in
Hard Exploration Problems [10.871978893808533]
QD法(Quality-Diversity method)は、高い性能のニッチ生物を生産する自然の能力に触発された進化的アルゴリズムである。
本稿では,探索困難を伴う高次元制御問題を示す3つの候補ベンチマークについて述べる。
私たちはまた、Jaxのオープンソース実装を提供し、実践者が少ない計算リソース上で高速かつ多数の実験を実行できるようにします。
論文 参考訳(メタデータ) (2022-11-24T18:04:12Z) - Planning for Sample Efficient Imitation Learning [52.44953015011569]
現在の模倣アルゴリズムは、高い性能と高環境サンプル効率を同時に達成するのに苦労している。
本研究では,環境内サンプルの効率と性能を同時に達成できる計画型模倣学習手法であるEfficientImitateを提案する。
実験結果から,EIは性能と試料効率の両立を図った。
論文 参考訳(メタデータ) (2022-10-18T05:19:26Z) - Relevance-guided Unsupervised Discovery of Abilities with
Quality-Diversity Algorithms [1.827510863075184]
本稿では,その課題に適した行動特性を自律的に発見する品質多様性アルゴリズムであるRelevance-guided Unsupervised Discovery of Abilitiesを紹介する。
我々は、ロボットが完全な感覚データに基づいて自律的にその能力を発見しなければならない、シミュレーションされたロボット環境に対するアプローチを評価する。
論文 参考訳(メタデータ) (2022-04-21T00:29:38Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
品質多様性アルゴリズムは、多様かつ高いパフォーマンスのスキルからなる大規模で複雑な行動レパートリーを発見することができる。
既存のQDアルゴリズムは、手動による人間の監督と介入を必要とするエピソードリセットと同様に、多数の評価を必要とする。
本稿では,オープンエンド環境におけるロボットの自律学習に向けたステップとして,リセットフリー品質多様性最適化(RF-QD)を提案する。
論文 参考訳(メタデータ) (2022-04-07T14:07:51Z) - Few-shot Quality-Diversity Optimization [50.337225556491774]
品質多様性(QD)の最適化は、強化学習における知覚的最小値とスパース報酬を扱う上で効果的なツールであることが示されている。
本稿では,タスク分布の例から,パラメータ空間の最適化によって得られる経路の情報を利用して,未知の環境でQD手法を初期化する場合,数発の適応が可能であることを示す。
ロボット操作とナビゲーションベンチマークを用いて、疎密な報酬設定と密集した報酬設定の両方で実施された実験は、これらの環境でのQD最適化に必要な世代数を著しく削減することを示している。
論文 参考訳(メタデータ) (2021-09-14T17:12:20Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Unsupervised Behaviour Discovery with Quality-Diversity Optimisation [1.0152838128195467]
品質多様性アルゴリズム(Quality-Diversity algorithm)は、与えられた問題に対する多様な高性能なソリューションの集合を見つけるために設計された進化的アルゴリズムのクラスを指す。
ロボット工学において、そのようなアルゴリズムはロボットの動作のほとんどをカバーするコントローラーの集合を生成するのに使用できる。
本稿では,自律型ロボットの能力を実現するアルゴリズムについて紹介する。
論文 参考訳(メタデータ) (2021-06-10T10:40:18Z) - Fast and stable MAP-Elites in noisy domains using deep grids [1.827510863075184]
Deep-Grid MAP-ElitesはMAP-Elitesアルゴリズムの変種である。
この単純なアプローチは、適合性最適化の観点から競争性能を達成しつつ、動作記述子のノイズに対する耐性が著しく高いことを示す。
論文 参考訳(メタデータ) (2020-06-25T08:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。