Exploring Linguistic Similarity and Zero-Shot Learning for Multilingual
Translation of Dravidian Languages
- URL: http://arxiv.org/abs/2308.05574v1
- Date: Thu, 10 Aug 2023 13:38:09 GMT
- Title: Exploring Linguistic Similarity and Zero-Shot Learning for Multilingual
Translation of Dravidian Languages
- Authors: Danish Ebadulla, Rahul Raman, S. Natarajan, Hridhay Kiran Shetty,
Ashish Harish Shenoy
- Abstract summary: We build a single-decoder neural machine translation system for Dravidian-Dravidian multilingual translation.
Our model achieves scores within 3 BLEU of large-scale pivot-based models when it is trained on 50% of the language directions.
- Score: 0.34998703934432673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current research in zero-shot translation is plagued by several issues such
as high compute requirements, increased training time and off target
translations. Proposed remedies often come at the cost of additional data or
compute requirements. Pivot based neural machine translation is preferred over
a single-encoder model for most settings despite the increased training and
evaluation time. In this work, we overcome the shortcomings of zero-shot
translation by taking advantage of transliteration and linguistic similarity.
We build a single encoder-decoder neural machine translation system for
Dravidian-Dravidian multilingual translation and perform zero-shot translation.
We compare the data vs zero-shot accuracy tradeoff and evaluate the performance
of our vanilla method against the current state of the art pivot based method.
We also test the theory that morphologically rich languages require large
vocabularies by restricting the vocabulary using an optimal transport based
technique. Our model manages to achieves scores within 3 BLEU of large-scale
pivot-based models when it is trained on 50\% of the language directions.
Related papers
- Using Machine Translation to Augment Multilingual Classification [0.0]
We explore the effects of using machine translation to fine-tune a multilingual model for a classification task across multiple languages.
We show that translated data are of sufficient quality to tune multilingual classifiers and that this novel loss technique is able to offer some improvement over models tuned without it.
arXiv Detail & Related papers (2024-05-09T00:31:59Z) - How Robust is Neural Machine Translation to Language Imbalance in
Multilingual Tokenizer Training? [86.48323488619629]
We analyze how translation performance changes as the data ratios among languages vary in the tokenizer training corpus.
We find that while relatively better performance is often observed when languages are more equally sampled, the downstream performance is more robust to language imbalance than we usually expected.
arXiv Detail & Related papers (2022-04-29T17:50:36Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus.
We propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences.
arXiv Detail & Related papers (2021-11-14T17:28:09Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - Rethinking Zero-shot Neural Machine Translation: From a Perspective of
Latent Variables [28.101782382170306]
We introduce a denoising autoencoder objective based on pivot language into traditional training objective to improve the translation accuracy on zero-shot directions.
We demonstrate that the proposed method is able to effectively eliminate the spurious correlations and significantly outperforms state-of-the-art methods with a remarkable performance.
arXiv Detail & Related papers (2021-09-10T07:18:53Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - A Hybrid Approach for Improved Low Resource Neural Machine Translation
using Monolingual Data [0.0]
Many language pairs are low resource, meaning the amount and/or quality of available parallel data is not sufficient to train a neural machine translation (NMT) model.
This work proposes a novel approach that enables both the backward and forward models to benefit from the monolingual target data.
arXiv Detail & Related papers (2020-11-14T22:18:45Z) - Subword Segmentation and a Single Bridge Language Affect Zero-Shot
Neural Machine Translation [36.4055239280145]
We investigate zero-shot performance of a multilingual EN$leftrightarrow$FR,CS,DE,FI system trained on WMT data.
We observe a bias towards copying the source in zero-shot translation, and investigate how the choice of subword segmentation affects this bias.
arXiv Detail & Related papers (2020-11-03T13:45:54Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.