In Pursuit of Privacy: The Value-Centered Privacy Assistant
- URL: http://arxiv.org/abs/2308.05700v2
- Date: Wed, 02 Apr 2025 13:35:11 GMT
- Title: In Pursuit of Privacy: The Value-Centered Privacy Assistant
- Authors: Sarah E. Carter, Mathieu d'Aquin, Dayana Spagnuelo, Ilaria Tiddi, Kathryn Cormican, Heike Felzmann,
- Abstract summary: We develop a prototype smartphone value-centered privacy assistant (VcPA)<n>VcPA promotes user privacy decisions based on personal values.<n>We establish proof-of-concept that a VcPA helps users make more value-centered app choices.
- Score: 2.995126929132991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many users make quick decisions that affect their data privacy without due consideration of their values. One such decision is whether to download a smartphone app to their device. Previous work has suggested a relationship between values, privacy preferences, and app choices, and proposed a value-centered approach to privacy that conceptually unites these relationships. In this work, we translate this theory into practice by constructing a prototype smartphone value-centered privacy assistant (VcPA) - a privacy assistant system that promotes user privacy decisions based on personal values. To do this, we designed and conducted an online survey that captured values and privacy preferences when considering whether to download an app from 273 smartphone users. Using this data, we constructed VcPA user profiles by clustering survey data based on the value rankings and stated privacy preferences. We then tested the VcPA, using selective notices, a "suggest alternatives" feature, and exploratory notices, with 77 users in a synthetic Mock App Store (MAS) setting and conducted follow-up semi-structured interviews. We establish proof-of-concept that a VcPA helps users make more value-centered app choices and identified improvements so that an assistant can be deployed on smartphone app stores.
Related papers
- Privacy Bills of Materials: A Transparent Privacy Information Inventory for Collaborative Privacy Notice Generation in Mobile App Development [23.41168782020005]
We introduce PriBOM, a systematic software engineering approach to better capture and coordinate mobile app privacy information.
PriBOM facilitates transparency-centric privacy documentation and specific privacy notice creation, enabling traceability and trackability of privacy practices.
arXiv Detail & Related papers (2025-01-02T08:14:52Z) - On the Differential Privacy and Interactivity of Privacy Sandbox Reports [78.85958224681858]
The Privacy Sandbox initiative from Google includes APIs for enabling privacy-preserving advertising functionalities.
We provide an abstract model for analyzing the privacy of these APIs and show that they satisfy a formal DP guarantee.
arXiv Detail & Related papers (2024-12-22T08:22:57Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - {A New Hope}: Contextual Privacy Policies for Mobile Applications and An
Approach Toward Automated Generation [19.578130824867596]
The aim of contextual privacy policies ( CPPs) is to fragment privacy policies into concise snippets, displaying them only within the corresponding contexts within the application's graphical user interfaces (GUIs)
In this paper, we first formulate CPP in mobile application scenario, and then present a novel multimodal framework, named SeePrivacy, specifically designed to automatically generate CPPs for mobile applications.
A human evaluation shows that 77% of the extracted privacy policy segments were perceived as well-aligned with the detected contexts.
arXiv Detail & Related papers (2024-02-22T13:32:33Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Mining User Privacy Concern Topics from App Reviews [10.776958968245589]
An increasing number of users are voicing their privacy concerns through app reviews on App stores.
The main challenge of effectively mining privacy concerns from user reviews lies in the fact that reviews expressing privacy concerns are overridden by a large number of reviews expressing more generic themes and noisy content.
In this work, we propose a novel automated approach to overcome that challenge.
arXiv Detail & Related papers (2022-12-19T08:07:27Z) - A Value-Centered Exploration of Data Privacy and Personalized Privacy
Assistants [0.0]
I suggest instead of utilizing informed consent we could create space for more value-centered user decisions.
I utilize Suzy Killmister's four-dimensional theory of autonomy to operationalize value-centered privacy decisions.
arXiv Detail & Related papers (2022-12-01T14:26:33Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
We looked into how explainability might help to tackle this problem.
We created privacy explanations that aim to help to clarify to end users why and for what purposes specific data is required.
Our findings reveal that privacy explanations can be an important step towards increasing trust in software systems.
arXiv Detail & Related papers (2022-10-18T09:30:37Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - Leveraging Privacy Profiles to Empower Users in the Digital Society [7.350403786094707]
Privacy and ethics of citizens are at the core of the concerns raised by our increasingly digital society.
We focus on the privacy dimension and contribute a step in the above direction through an empirical study on an existing dataset collected from the fitness domain.
The results reveal that a compact set of semantic-driven questions helps distinguish users better than a complex domain-dependent one.
arXiv Detail & Related papers (2022-04-01T15:31:50Z) - Fully Adaptive Composition in Differential Privacy [53.01656650117495]
Well-known advanced composition theorems allow one to query a private database quadratically more times than basic privacy composition would permit.
We introduce fully adaptive composition, wherein both algorithms and their privacy parameters can be selected adaptively.
We construct filters that match the rates of advanced composition, including constants, despite allowing for adaptively chosen privacy parameters.
arXiv Detail & Related papers (2022-03-10T17:03:12Z) - Analysis of Longitudinal Changes in Privacy Behavior of Android
Applications [79.71330613821037]
In this paper, we examine the trends in how Android apps have changed over time with respect to privacy.
We examine the adoption of HTTPS, whether apps scan the device for other installed apps, the use of permissions for privacy-sensitive data, and the use of unique identifiers.
We find that privacy-related behavior has improved with time as apps continue to receive updates, and that the third-party libraries used by apps are responsible for more issues with privacy.
arXiv Detail & Related papers (2021-12-28T16:21:31Z) - Is Downloading this App Consistent with my Values? Conceptualizing a
Value-Centered Privacy Assistant [0.0]
I propose that data privacy decisions can be understood as an expression of user values.
I further propose the creation of a value-centered privacy assistant (VcPA)
arXiv Detail & Related papers (2021-06-23T15:08:58Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.