A Comparison of Classical and Deep Reinforcement Learning Methods for
HVAC Control
- URL: http://arxiv.org/abs/2308.05711v1
- Date: Thu, 10 Aug 2023 17:20:02 GMT
- Title: A Comparison of Classical and Deep Reinforcement Learning Methods for
HVAC Control
- Authors: Marshall Wang, John Willes, Thomas Jiralerspong, Matin Moezzi
- Abstract summary: We benchmark two popular classical and deep RL methods (Q-Learning and Deep-Q-Networks) across multiple HVAC environments.
The findings provide insight for configuring RL agents in HVAC systems, promoting energy-efficient and cost-effective operation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) is a promising approach for optimizing HVAC
control. RL offers a framework for improving system performance, reducing
energy consumption, and enhancing cost efficiency. We benchmark two popular
classical and deep RL methods (Q-Learning and Deep-Q-Networks) across multiple
HVAC environments and explore the practical consideration of model
hyper-parameter selection and reward tuning. The findings provide insight for
configuring RL agents in HVAC systems, promoting energy-efficient and
cost-effective operation.
Related papers
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a Quanser Aero 2 system.
PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability.
arXiv Detail & Related papers (2024-08-28T08:35:34Z) - Go Beyond Black-box Policies: Rethinking the Design of Learning Agent
for Interpretable and Verifiable HVAC Control [3.326392645107372]
We overcome the bottleneck by redesigning HVAC controllers using decision trees extracted from thermal dynamics models and historical data.
Our method saves 68.4% more energy and increases human comfort gain by 14.8% compared to the state-of-the-art method.
arXiv Detail & Related papers (2024-02-29T22:42:23Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
This research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL)
The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control.
arXiv Detail & Related papers (2024-02-24T23:25:35Z) - An experimental evaluation of Deep Reinforcement Learning algorithms for HVAC control [40.71019623757305]
Recent studies have shown that Deep Reinforcement Learning (DRL) algorithms can outperform traditional reactive controllers.
This paper provides a critical and reproducible evaluation of several state-of-the-art DRL algorithms for HVAC control.
arXiv Detail & Related papers (2024-01-11T08:40:26Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Laxity-Aware Scalable Reinforcement Learning for HVAC Control [2.0625936401496237]
We tackle the curse of dimensionality issue in modeling and control by utilizing the concept of laxity to quantify the emergency level of each operation request.
We propose a two-level approach to address energy optimization for a large population of HVAC systems.
arXiv Detail & Related papers (2023-06-29T01:28:14Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
Confidence-Controlled Exploration (CCE) is designed to enhance the training sample efficiency of reinforcement learning algorithms for sparse reward settings such as robot navigation.
CCE is based on a novel relationship we provide between gradient estimation and policy entropy.
We demonstrate through simulated and real-world experiments that CCE outperforms conventional methods that employ constant trajectory lengths and entropy regularization.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning [73.80728148866906]
Quasimetric Reinforcement Learning (QRL) is a new RL method that utilizes quasimetric models to learn optimal value functions.
On offline and online goal-reaching benchmarks, QRL also demonstrates improved sample efficiency and performance.
arXiv Detail & Related papers (2023-04-03T17:59:58Z) - Supervised Advantage Actor-Critic for Recommender Systems [76.7066594130961]
We propose negative sampling strategy for training the RL component and combine it with supervised sequential learning.
Based on sampled (negative) actions (items), we can calculate the "advantage" of a positive action over the average case.
We instantiate SNQN and SA2C with four state-of-the-art sequential recommendation models and conduct experiments on two real-world datasets.
arXiv Detail & Related papers (2021-11-05T12:51:15Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.