Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2402.15932v1
- Date: Sat, 24 Feb 2024 23:25:35 GMT
- Title: Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach
- Authors: Alaa Selim, Yanzhu Ye, Junbo Zhao, Bo Yang
- Abstract summary: This research presents a novel framework that harnesses the potential of Deep Reinforcement Learning (DRL)
The integration of our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a novel framework that efficiently uses RAY's resources to improve system adaptability and control.
- Score: 11.11570399751075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving domain of electrical power systems, the Volt-VAR
optimization (VVO) is increasingly critical, especially with the burgeoning
integration of renewable energy sources. Traditional approaches to
learning-based VVO in expansive and dynamically changing power systems are
often hindered by computational complexities. To address this challenge, our
research presents a novel framework that harnesses the potential of Deep
Reinforcement Learning (DRL), specifically utilizing the Importance Weighted
Actor-Learner Architecture (IMPALA) algorithm, executed on the RAY platform.
This framework, built upon RLlib-an industry-standard in Reinforcement
Learning-ingeniously capitalizes on the distributed computing capabilities and
advanced hyperparameter tuning offered by RAY. This design significantly
expedites the exploration and exploitation phases in the VVO solution space.
Our empirical results demonstrate that our approach not only surpasses existing
DRL methods in achieving superior reward outcomes but also manifests a
remarkable tenfold reduction in computational requirements. The integration of
our DRL agent with the RAY platform facilitates the creation of RLlib-IMPALA, a
novel framework that efficiently uses RAY's resources to improve system
adaptability and control. RLlib-IMPALA leverages RAY's toolkit to enhance
analytical capabilities and significantly speeds up training to become more
than 10 times faster than other state-of-the-art DRL methods.
Related papers
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - A Method for Fast Autonomy Transfer in Reinforcement Learning [3.8049020806504967]
This paper introduces a novel reinforcement learning (RL) strategy designed to facilitate rapid autonomy transfer.
Unlike traditional methods that require extensive retraining or fine-tuning, our approach integrates existing knowledge, enabling an RL agent to adapt swiftly to new settings.
arXiv Detail & Related papers (2024-07-29T23:48:07Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - RLLTE: Long-Term Evolution Project of Reinforcement Learning [48.181733263496746]
We present RLLTE: a long-term evolution, extremely modular, and open-source framework for reinforcement learning research and application.
Beyond delivering top-notch algorithm implementations, RLLTE also serves as a toolkit for developing algorithms.
RLLTE is expected to set standards for RL engineering practice and be highly stimulative for industry and academia.
arXiv Detail & Related papers (2023-09-28T12:30:37Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters [0.0]
This paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3.
Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios.
arXiv Detail & Related papers (2022-09-08T12:58:09Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.