GaborPINN: Efficient physics informed neural networks using
multiplicative filtered networks
- URL: http://arxiv.org/abs/2308.05843v1
- Date: Thu, 10 Aug 2023 19:51:00 GMT
- Title: GaborPINN: Efficient physics informed neural networks using
multiplicative filtered networks
- Authors: Xinquan Huang, Tariq Alkhalifah
- Abstract summary: Physics-informed neural networks (PINNs) provide functional wavefield solutions represented by neural networks (NNs)
We propose a modified PINN using multiplicative filtered networks, which embeds some of the known characteristics of the wavefield in training.
The proposed method achieves up to a two-magnitude increase in the speed of convergence as compared with conventional PINNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computation of the seismic wavefield by solving the Helmholtz equation is
crucial to many practical applications, e.g., full waveform inversion.
Physics-informed neural networks (PINNs) provide functional wavefield solutions
represented by neural networks (NNs), but their convergence is slow. To address
this problem, we propose a modified PINN using multiplicative filtered
networks, which embeds some of the known characteristics of the wavefield in
training, e.g., frequency, to achieve much faster convergence. Specifically, we
use the Gabor basis function due to its proven ability to represent wavefields
accurately and refer to the implementation as GaborPINN. Meanwhile, we
incorporate prior information on the frequency of the wavefield into the design
of the method to mitigate the influence of the discontinuity of the represented
wavefield by GaborPINN. The proposed method achieves up to a two-magnitude
increase in the speed of convergence as compared with conventional PINNs.
Related papers
- Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Physics-informed neural wavefields with Gabor basis functions [4.07926531936425]
We propose an approach to enhance the efficiency and accuracy of neural network wavefield solutions.
Specifically, for the Helmholtz equation, we augment the fully connected neural network model with an Gabor layer constituting the final hidden layer.
These/coefficients of the Gabor functions are learned from the previous hidden layers that include nonlinear activation functions.
arXiv Detail & Related papers (2023-10-16T17:30:33Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - Transfer Learning Enhanced Full Waveform Inversion [2.3020018305241337]
We propose a way to favorably employ neural networks in the field of non-destructive testing using Full Waveform Inversion (FWI)
The presented methodology discretizes the unknown material distribution in the domain with a neural network within an adjoint optimization.
arXiv Detail & Related papers (2023-02-22T10:12:07Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - PINNup: Robust neural network wavefield solutions using frequency
upscaling and neuron splitting [0.0]
We propose a novel implementation of PINN using frequency upscaling and neuron splitting.
The proposed PINN exhibits notable superiority in terms of convergence and accuracy.
It can achieve neuron based high-frequency wavefield solutions with a two-hidden-layer model.
arXiv Detail & Related papers (2021-09-29T16:35:50Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.