Residual resampling-based physics-informed neural network for neutron diffusion equations
- URL: http://arxiv.org/abs/2407.10988v1
- Date: Sun, 23 Jun 2024 13:49:31 GMT
- Title: Residual resampling-based physics-informed neural network for neutron diffusion equations
- Authors: Heng Zhang, Yun-Ling He, Dong Liu, Qin Hang, He-Min Yao, Di Xiang,
- Abstract summary: The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
- Score: 7.105073499157097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors. Nevertheless, employing the Physics-Informed Neural Network (PINN) method for its solution entails certain limitations. Traditional PINN approaches often utilize fully connected network (FCN) architecture, which is susceptible to overfitting, training instability, and gradient vanishing issues as the network depth increases. These challenges result in accuracy bottlenecks in the solution. In response to these issues, the Residual-based Resample Physics-Informed Neural Network(R2-PINN) is proposed, which proposes an improved PINN architecture that replaces the FCN with a Convolutional Neural Network with a shortcut(S-CNN), incorporating skip connections to facilitate gradient propagation between network layers. Additionally, the incorporation of the Residual Adaptive Resampling (RAR) mechanism dynamically increases sampling points, enhancing the spatial representation capabilities and overall predictive accuracy of the model. The experimental results illustrate that our approach significantly improves the model's convergence capability, achieving high-precision predictions of physical fields. In comparison to traditional FCN-based PINN methods, R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
Related papers
- HyResPINNs: Adaptive Hybrid Residual Networks for Learning Optimal Combinations of Neural and RBF Components for Physics-Informed Modeling [22.689531776611084]
We present a new class of PINNs called HyResPINNs, which augment traditional PINNs with adaptive hybrid residual blocks.
A key feature of our method is the inclusion of adaptive combination parameters within each residual block.
We show that HyResPINNs are more robust to training point locations and neural network architectures than traditional PINNs.
arXiv Detail & Related papers (2024-10-04T16:21:14Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
We introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN)
The proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness.
This study lays the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
arXiv Detail & Related papers (2024-04-01T10:35:35Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs) to solve dynamic Poisson-Nernst-Planck (PNP) equations.
The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions.
Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems.
arXiv Detail & Related papers (2024-02-01T02:57:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Physics-informed neural networks for gravity currents reconstruction
from limited data [0.0]
The present work investigates the use of physics-informed neural networks (PINNs) for the 3D reconstruction of unsteady gravity currents from limited data.
In the PINN context, the flow fields are reconstructed by training a neural network whose objective function penalizes the mismatch between the network predictions and the observed data.
arXiv Detail & Related papers (2022-11-03T11:27:29Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and
(gradient) stable architecture for learning long time dependencies [15.2292571922932]
We propose a novel architecture for recurrent neural networks.
Our proposed RNN is based on a time-discretization of a system of second-order ordinary differential equations.
Experiments show that the proposed RNN is comparable in performance to the state of the art on a variety of benchmarks.
arXiv Detail & Related papers (2020-10-02T12:35:04Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.