Catalysis of quantum tunneling by ancillary system learning
- URL: http://arxiv.org/abs/2308.06060v1
- Date: Fri, 11 Aug 2023 10:21:14 GMT
- Title: Catalysis of quantum tunneling by ancillary system learning
- Authors: Renzo Testa, Alex Rodriguez, Alberto d'Onofrio, Andrea Trombettoni,
Fabio Benatti, Fabio Anselmi
- Abstract summary: We show that an effective solution can be achieved by coupling the tunneling system with an ancillary system of the same kind.
We provide examples for the paradigmatic scenario involving a two-mode system and a two-mode ancilla with arbitrary couplings.
Importantly, the enhancement of the tunneling probability appears to be minimally affected by noise and decoherence in both the system and the ancilla.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given the key role that quantum tunneling plays in a wide range of
applications, a crucial objective is to maximize the probability of tunneling
from one quantum state/level to another, while keeping the resources of the
underlying physical system fixed. In this work, we demonstrate that an
effective solution to this challenge can be achieved by coupling the tunneling
system with an ancillary system of the same kind. By utilizing machine learning
techniques, the parameters of both the ancillary system and the coupling can be
optimized, leading to the maximization of the tunneling probability. We provide
illustrative examples for the paradigmatic scenario involving a two-mode system
and a two-mode ancilla with arbitrary couplings and in the presence of several
interacting particles. Importantly, the enhancement of the tunneling
probability appears to be minimally affected by noise and decoherence in both
the system and the ancilla.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Inverse design of Ancillary System for Quantum Noise Cancellation [0.0]
We propose a novel approach to the decoherence effects on a target system S by coupling it to an ancillary system A with tunable parameters.
By suitably engineering the S-A interaction Hamiltonian, a dark factorized compound state is found that achieves effective noise cancellation and significantly preserves quantum coherence in the target system S.
arXiv Detail & Related papers (2024-08-08T12:45:15Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Machine Learning Catalysis of Quantum Tunneling [0.07281763676971992]
We show that, by applying Machine Learning techniques when the system is coupled to ancilla, one optimize the parameters of both the ancillary component and the coupling.
We provide illustrative examples for the paradigmatic scenario involving a two-mode system and a two-mode ancilla.
The increase of the tunneling probability is rooted in the decrease of the two-well asymmetry due to the coherent oscillations induced by the coupling to the ancilla.
arXiv Detail & Related papers (2023-10-16T08:10:41Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Rate-equation approach for multi-level quantum systems [0.0]
We use the rate-equation formalism for description of a two-level system (TLS) with further expanding it on a case of a multi-level system.
The presented approach can also be considered as one more way to explore properties of quantum systems and underlying physical processes.
arXiv Detail & Related papers (2022-09-27T16:20:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Trajectories without quantum uncertainties in composite systems with
disparate energy spectra [0.0]
measurement-induced quantum back action can be eliminated in composite systems by engineering quantum-mechanics-free subspaces.
The utility of the concept has been limited by the requirement of close proximity of the resonance frequencies of the system of interest and the negative-mass reference system.
Here we propose a general approach which overcomes these limitations by employing periodic modulation of the driving fields.
arXiv Detail & Related papers (2021-11-04T09:12:28Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.