Gaussian Process Regression for Maximum Entropy Distribution
- URL: http://arxiv.org/abs/2308.06149v1
- Date: Fri, 11 Aug 2023 14:26:29 GMT
- Title: Gaussian Process Regression for Maximum Entropy Distribution
- Authors: Mohsen Sadr, Manuel Torrilhon, M. Hossein Gorji
- Abstract summary: We investigate the suitability of Gaussian priors to approximate the Lagrange multipliers as a map of a given set of moments.
The performance of the devised data-driven Maximum-Entropy closure is studied for couple of test cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Maximum-Entropy Distributions offer an attractive family of probability
densities suitable for moment closure problems. Yet finding the Lagrange
multipliers which parametrize these distributions, turns out to be a
computational bottleneck for practical closure settings. Motivated by recent
success of Gaussian processes, we investigate the suitability of Gaussian
priors to approximate the Lagrange multipliers as a map of a given set of
moments. Examining various kernel functions, the hyperparameters are optimized
by maximizing the log-likelihood. The performance of the devised data-driven
Maximum-Entropy closure is studied for couple of test cases including
relaxation of non-equilibrium distributions governed by Bhatnagar-Gross-Krook
and Boltzmann kinetic equations.
Related papers
- Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
We provide theoretical guarantees for the convergence behaviour of diffusion-based generative models under strongly log-concave data.
Our class of functions used for score estimation is made of Lipschitz continuous functions avoiding any Lipschitzness assumption on the score function.
This approach yields the best known convergence rate for our sampling algorithm.
arXiv Detail & Related papers (2023-11-22T18:40:45Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
We propose a robust process model in the Gaussian process framework with the likelihood of observed data expressed as the Huber probability distribution.
The proposed model employs weights based on projection statistics to scale residuals and bound the influence of vertical outliers and bad leverage points on the latent functions estimates.
arXiv Detail & Related papers (2023-01-19T02:59:33Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Approximate Inference for Fully Bayesian Gaussian Process Regression [11.47317712333228]
Learning in Gaussian Process models occurs through the adaptation of hyper parameters of the mean and the covariance function.
An alternative learning procedure is to infer the posterior over hyper parameters in a hierarchical specification of GPs we call textitFully Bayesian Gaussian Process Regression (GPR)
We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
arXiv Detail & Related papers (2019-12-31T17:18:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.