Statistical Limits in Random Tensors with Multiple Correlated Spikes
- URL: http://arxiv.org/abs/2503.03356v1
- Date: Wed, 05 Mar 2025 10:37:54 GMT
- Title: Statistical Limits in Random Tensors with Multiple Correlated Spikes
- Authors: Yang Qi, Alexis Decurninge,
- Abstract summary: We use tools from random matrix theory to study the multi-spiked tensor model.<n>We study the phase transition phenomenon for finding critical points of the corresponding optimization problem.<n>We propose a new estimator of the rank-$r$ weights by solving a system of equations.
- Score: 6.614637831308917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use tools from random matrix theory to study the multi-spiked tensor model, i.e., a rank-$r$ deformation of a symmetric random Gaussian tensor. In particular, thanks to the nature of local optimization methods used to find the maximum likelihood estimator of this model, we propose to study the phase transition phenomenon for finding critical points of the corresponding optimization problem, i.e., those points defined by the Karush-Kuhn-Tucker (KKT) conditions. Moreover, we characterize the limiting alignments between the estimated signals corresponding to a critical point of the likelihood and the ground truth signals. With the help of these results, we propose a new estimator of the rank-$r$ tensor weights by solving a system of polynomial equations, which is asymptotically unbiased contrary the maximum likelihood estimator.
Related papers
- Gaussian Approximation and Multiplier Bootstrap for Stochastic Gradient Descent [14.19520637866741]
We establish non-asymptotic convergence rates in the central limit theorem for Polyak-Ruppert-averaged iterates of gradient descent.<n>We prove the non-asymptotic validity of the multiplier bootstrap for constructing the confidence sets for an optimization problem.
arXiv Detail & Related papers (2025-02-10T17:49:05Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.<n>We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Statistical and Computational Efficiency for Smooth Tensor Estimation with Unknown Permutations [12.983290324156114]
We develop a family of smooth tensor models up to arbitrary index permutations.<n>We show that a constrained least-squares estimator in the block-wise family achieves the minimax error bound.<n>We also provide an efficient-time Borda count algorithm that achieves provably optimal rate.
arXiv Detail & Related papers (2021-11-08T17:53:48Z) - A Random Matrix Perspective on Random Tensors [40.89521598604993]
We study the spectra of random matrices arising from contractions of a given random tensor.
Our technique yields a hitherto unknown characterization of the local maximum of the ML problem.
Our approach is versatile and can be extended to other models, such as asymmetric, non-Gaussian and higher-order ones.
arXiv Detail & Related papers (2021-08-02T10:42:22Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
arXiv Detail & Related papers (2020-06-26T15:19:43Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
This paper describes a flexible framework for low-rank tensor estimation problems.
It includes many important instances from applications in computational imaging, genomics, and network analysis.
arXiv Detail & Related papers (2020-02-26T01:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.