Covid-19 Public Sentiment Analysis for Indian Tweets Classification
- URL: http://arxiv.org/abs/2308.06241v1
- Date: Tue, 1 Aug 2023 09:29:55 GMT
- Title: Covid-19 Public Sentiment Analysis for Indian Tweets Classification
- Authors: Mohammad Maksood Akhter, Devpriya Kanojia
- Abstract summary: We show how Twitter data has been extracted and then run sentimental analysis queries on it.
This is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and are either positive or negative or neutral in some cases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When any extraordinary event takes place in the world wide area, it is the
social media that acts as the fastest carrier of the news along with the
consequences dealt with that event. One can gather much information through
social networks regarding the sentiments, behavior, and opinions of the people.
In this paper, we focus mainly on sentiment analysis of twitter data of India
which comprises of COVID-19 tweets. We show how Twitter data has been extracted
and then run sentimental analysis queries on it. This is helpful to analyze the
information in the tweets where opinions are highly unstructured,
heterogeneous, and are either positive or negative or neutral in some cases.
Related papers
- What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - Sentiment Analysis of Covid-19 Tweets using Evolutionary
Classification-Based LSTM Model [0.6445605125467573]
This paper represents the sentiment analysis on collected large number of tweets on Coronavirus or Covid-19.
We analyze the trend of public sentiment on the topics related to Covid-19 epidemic using an evolutionary classification followed by the n-gram analysis.
We trained the long-short term network using two types of rated tweets to predict sentiment on Covid-19 data and obtained an overall accuracy of 84.46%.
arXiv Detail & Related papers (2021-06-13T04:27:21Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - CML-COVID: A Large-Scale COVID-19 Twitter Dataset with Latent Topics,
Sentiment and Location Information [0.0]
CML-COVID is a COVID-19 Twitter data set of 19,298,967 million tweets from 5,977,653 unique individuals.
These tweets were collected between March 2020 and July 2020 using the query terms coronavirus, covid and mask related to COVID-19.
arXiv Detail & Related papers (2021-01-28T18:59:10Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
Country image has a profound influence on international relations and economic development.
In the worldwide outbreak of COVID-19, countries and their people display different reactions.
In this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset.
arXiv Detail & Related papers (2020-09-12T15:54:51Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Mood of India During Covid-19 -- An Interactive Web Portal Based on
Emotion Analysis of Twitter Data [7.820667552233989]
This web portal aims to display mood of India during Covid-19, based on real time twitter data.
As of May 6 2020, the web portal has about 194370 tweets, and each of these tweets are classified into seven categories.
A list of Trigger Events are also specified, to allow users to view the mood of India on specific events happening in the country during Covid-19.
arXiv Detail & Related papers (2020-05-06T17:04:43Z) - That Message Went Viral?! Exploratory Analytics and Sentiment Analysis
into the Propagation of Tweets [0.0]
We conducted an exploratory analysis on a dataset of over a million Tweets.
We identified the most popular messages, and analyzed the tweets on multiple endogenous dimensions.
We found some interesting patterns and uncovered new insights to help researchers and practitioners better understand the behavior of popular viral tweets.
arXiv Detail & Related papers (2020-04-21T02:38:53Z) - A thematic analysis of highly retweeted early COVID -19 tweets:
Consensus, information, dissent, and lockdown life [8.528384027684192]
This article investigates important issues reflected on Twitter in the early stages of the public reaction to COVID-19.
Main themes identified for the 87 qualifying tweets were: lockdown life; attitude towards social restrictions; politics; safety messages; people with COVID-19; support for key workers; work; and COVID-19 facts/news.
arXiv Detail & Related papers (2020-04-06T16:34:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.