Qibolab: an open-source hybrid quantum operating system
- URL: http://arxiv.org/abs/2308.06313v3
- Date: Mon, 5 Feb 2024 18:17:55 GMT
- Title: Qibolab: an open-source hybrid quantum operating system
- Authors: Stavros Efthymiou, Alvaro Orgaz-Fuertes, Rodolfo Carobene, Juan
Cereijo, Andrea Pasquale, Sergi Ramos-Calderer, Simone Bordoni, David
Fuentes-Ruiz, Alessandro Candido, Edoardo Pedicillo, Matteo Robbiati,
Yuanzheng Paul Tan, Jadwiga Wilkens, Ingo Roth, Jos\'e Ignacio Latorre,
Stefano Carrazza
- Abstract summary: We present Qibolab, an open-source software library for quantum hardware control integrated with the Qibo quantum computing framework.
Qibolab provides the software layer required to automatically execute circuit-based algorithms on custom self-hosted quantum hardware platforms.
- Score: 28.92075626290617
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Qibolab, an open-source software library for quantum hardware
control integrated with the Qibo quantum computing middleware framework.
Qibolab provides the software layer required to automatically execute
circuit-based algorithms on custom self-hosted quantum hardware platforms. We
introduce a set of objects designed to provide programmatic access to quantum
control through pulses-oriented drivers for instruments, transpilers and
optimization algorithms. Qibolab enables experimentalists and developers to
delegate all complex aspects of hardware implementation to the library so they
can standardize the deployment of quantum computing algorithms in a extensible
hardware-agnostic way, using superconducting qubits as the first officially
supported quantum technology. We first describe the status of all components of
the library, then we show examples of control setup for superconducting qubits
platforms. Finally, we present successful application results related to
circuit-based algorithms.
Related papers
- Qibocal: an open-source framework for calibration of self-hosted quantum devices [27.233691799793146]
We present Qibocal, an open-source software library to perform calibration and characterization of superconducting quantum devices.
We give an overview on some of the protocols implemented to perform single and two-qubit calibration gates.
arXiv Detail & Related papers (2024-09-30T18:00:02Z) - An open-source framework for quantum hardware control [31.874825130479174]
The development of quantum computers needs reliable quantum hardware and tailored software for controlling electronics specific to various quantum platforms.
This paper presents updates to Qibolab, a software library that leverages Qibo capabilities to execute quantum algorithms on self hosted quantum hardware platforms.
arXiv Detail & Related papers (2024-07-31T16:44:31Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Qibosoq: an open-source framework for quantum circuit RFSoC programming [37.94431794242543]
We present Qibosoq, an open-source server-side software package for executing arbitrary pulse sequences on self-hosted quantum processing units.
Qibosoq bridges the RFSoC firmware provided by Qick, a Quantum Instrumentation Control Kit, with Qibo, a quantum computing framework.
arXiv Detail & Related papers (2023-10-09T16:49:08Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum simulation with just-in-time compilation [0.0]
We present a first attempt to perform circuit-based quantum simulation using the just-in-time (JIT) compilation technique.
Qibojit is a new module for the Qibo quantum computing framework, which uses a just-in-time compilation approach through Python.
arXiv Detail & Related papers (2022-03-16T18:00:00Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
Quantum computing vendors are beginning to open up application programming for direct pulse-level quantum control.
We present an extension to the XACC system-level quantum-classical software framework.
This extension enables the translation of digital quantum circuit representations to equivalent pulse sequences.
arXiv Detail & Related papers (2020-06-04T13:13:55Z) - Software tools for quantum control: Improving quantum computer
performance through noise and error suppression [3.6508609114589317]
We introduce software tools for the application and integration of quantum control in quantum computing research.
We provide an overview of a set of python-based classical software tools for creating and deploying optimized quantum control solutions.
We describe a software architecture leveraging both high-performance distributed cloud computation and local custom integration into hardware systems.
arXiv Detail & Related papers (2020-01-13T04:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.