An open-source framework for quantum hardware control
- URL: http://arxiv.org/abs/2407.21737v2
- Date: Mon, 12 Aug 2024 16:42:03 GMT
- Title: An open-source framework for quantum hardware control
- Authors: Edoardo Pedicillo, Alessandro Candido, Stavros Efthymiou, Hayk Sargsyan, Yuanzheng Paul Tan, Juan Cereijo, Jun Yong Khoo, Andrea Pasquale, Matteo Robbiati, Stefano Carrazza,
- Abstract summary: The development of quantum computers needs reliable quantum hardware and tailored software for controlling electronics specific to various quantum platforms.
This paper presents updates to Qibolab, a software library that leverages Qibo capabilities to execute quantum algorithms on self hosted quantum hardware platforms.
- Score: 31.874825130479174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The development of quantum computers needs reliable quantum hardware and tailored software for controlling electronics specific to various quantum platforms. Middleware is a type of computer software program that aims to provide standardized software tools across the entire pipeline, from high level execution of quantum computing algorithms to low level driver instructions tailored to specific experimental setups, including instruments. This paper presents updates to Qibolab, a software library that leverages Qibo capabilities to execute quantum algorithms on self hosted quantum hardware platforms. Qibolab offers an application programming interface (API) for instrument control through arbitrary pulses and driver operations including sweepers. This paper offers an overview of the new features implemented in Qibolab, including the redefined boundaries between platform and channel classes, the integration of an emulator for simulating quantum hardware behaviour, and it shows updated execution times benchmarks for superconducting single qubit calibration routines.
Related papers
- MQT Qudits: A Software Framework for Mixed-Dimensional Quantum Computing [4.306566710489809]
We introduce MQT Qudits, an open-source tool to assist in designing and implementing applications for mixed-dimensional qudit devices.
We specify a standardized language for mixed-dimension systems and discuss circuit specification, compilation to hardware gate sets, efficient circuit simulation, and open challenges.
arXiv Detail & Related papers (2024-10-03T18:00:01Z) - Qibocal: an open-source framework for calibration of self-hosted quantum devices [27.233691799793146]
We present Qibocal, an open-source software library to perform calibration and characterization of superconducting quantum devices.
We give an overview on some of the protocols implemented to perform single and two-qubit calibration gates.
arXiv Detail & Related papers (2024-09-30T18:00:02Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Qibosoq: an open-source framework for quantum circuit RFSoC programming [37.94431794242543]
We present Qibosoq, an open-source server-side software package for executing arbitrary pulse sequences on self-hosted quantum processing units.
Qibosoq bridges the RFSoC firmware provided by Qick, a Quantum Instrumentation Control Kit, with Qibo, a quantum computing framework.
arXiv Detail & Related papers (2023-10-09T16:49:08Z) - Qibolab: an open-source hybrid quantum operating system [28.92075626290617]
We present Qibolab, an open-source software library for quantum hardware control integrated with the Qibo quantum computing framework.
Qibolab provides the software layer required to automatically execute circuit-based algorithms on custom self-hosted quantum hardware platforms.
arXiv Detail & Related papers (2023-08-11T18:00:00Z) - Cloud on-demand emulation of quantum dynamics with tensor networks [48.7576911714538]
We introduce a tensor network based emulator, simulating a programmable analog quantum processing unit (QPU)
The software package is fully integrated in a cloud platform providing a common interface for executing jobs on a HPC cluster as well as dispatching them to a QPU device.
arXiv Detail & Related papers (2023-02-10T14:08:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Extending XACC for Quantum Optimal Control [70.19683407682642]
Quantum computing vendors are beginning to open up application programming for direct pulse-level quantum control.
We present an extension to the XACC system-level quantum-classical software framework.
This extension enables the translation of digital quantum circuit representations to equivalent pulse sequences.
arXiv Detail & Related papers (2020-06-04T13:13:55Z) - Enabling Pulse-level Programming, Compilation, and Execution in XACC [78.8942067357231]
Gate-model quantum processing units (QPUs) are currently available from vendors over the cloud.
Digital quantum programming approaches exist to run low-depth circuits on physical hardware.
Vendors are beginning to open this pulse-level control system to the public via specified interfaces.
arXiv Detail & Related papers (2020-03-26T15:08:32Z) - Software tools for quantum control: Improving quantum computer
performance through noise and error suppression [3.6508609114589317]
We introduce software tools for the application and integration of quantum control in quantum computing research.
We provide an overview of a set of python-based classical software tools for creating and deploying optimized quantum control solutions.
We describe a software architecture leveraging both high-performance distributed cloud computation and local custom integration into hardware systems.
arXiv Detail & Related papers (2020-01-13T04:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.