論文の概要: Wireless Federated $k$-Means Clustering with Non-coherent Over-the-Air
Computation
- arxiv url: http://arxiv.org/abs/2308.06371v1
- Date: Fri, 11 Aug 2023 20:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 17:40:54.790658
- Title: Wireless Federated $k$-Means Clustering with Non-coherent Over-the-Air
Computation
- Title(参考訳): 非コヒーレントオーバーザエア計算によるワイヤレスフェデレーション$k$-Meansクラスタリング
- Authors: Alphan Sahin
- Abstract要約: OACスキームは、バランスの取れた数系における数値の表現を利用するエンコーダに依存している。
非効率なセンチロイドの再初期化法を提案し、不均一なデータ分散のための提案手法の性能を向上させる。
- 参考スコア(独自算出の注目度): 14.087062902871212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose using an over-the-air computation (OAC) scheme for
the federated k-means clustering algorithm to reduce the per-round
communication latency when it is implemented over a wireless network. The OAC
scheme relies on an encoder exploiting the representation of a number in a
balanced number system and computes the sum of the updates for the federated
k-means via signal superposition property of wireless multiple-access channels
non-coherently to eliminate the need for precise phase and time
synchronization. Also, a reinitialization method for ineffectively used
centroids is proposed to improve the performance of the proposed method for
heterogeneous data distribution. For a customer-location clustering scenario,
we demonstrate the performance of the proposed algorithm and compare it with
the standard k-means clustering. Our results show that the proposed approach
performs similarly to the standard k-means while reducing communication
latency.
- Abstract(参考訳): 本研究では,無線ネットワーク上で実装された場合の通信遅延を低減するために,フェデレートk平均クラスタリングアルゴリズムに対してoac(over-the-air computation)方式を提案する。
OAC方式は、バランスの取れた数系における数値の表現を利用するエンコーダに依存し、無線マルチアクセスチャネルの信号重畳特性を介して連合k平均の更新の総和を非整合的に計算し、正確な位相と時間同期の必要性をなくす。
また,不有効利用したセンチロイドの再初期化手法を提案し,不均一なデータ分散のための提案手法の性能向上を図った。
ユーザロケーションクラスタリングのシナリオでは、提案アルゴリズムの性能を実証し、標準のk-meansクラスタリングと比較する。
提案手法は,通信遅延を低減しつつ,標準的なk-meansと同様の動作を示す。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Adaptively Robust and Sparse K-means Clustering [5.535948428518607]
本稿では,標準的なK-meansアルゴリズムのこれらの実用的限界に対処するため,適応的に頑健でスパースなK-meansクラスタリング(ARSK)を提案する。
頑健性のために,各観測値に冗長な誤差成分を導入し,グループスパースペナルティを用いて追加パラメータをペナルティ化する。
高次元ノイズ変数の影響に対応するために、重みを取り入れ、重みベクトルの空間性を制御するペナルティを実装することにより、目的関数を変更する。
論文 参考訳(メタデータ) (2024-07-09T15:20:41Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
ファジィK平均クラスタリングは教師なしデータ分析において重要な手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィテクストK-Meansクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Unsupervised Clustered Federated Learning in Complex Multi-source
Acoustic Environments [75.8001929811943]
現実的で挑戦的なマルチソース・マルチルーム音響環境を導入する。
本稿では,音響シーンの変動を考慮したクラスタリング制御手法を提案する。
提案手法はクラスタリングに基づく測度を用いて最適化され,ネットワークワイド分類タスクによって検証される。
論文 参考訳(メタデータ) (2021-06-07T14:51:39Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
本研究では,トラジェクトリの集中型クラスタリングの問題について考察する。
我々はDTWの連続バージョンを距離測定として使用することを提案し、これをCDTW(Continuous dynamic time warping)と呼ぶ。
一連の軌道から中心を計算し、その後反復的に改善する実践的な方法を示す。
論文 参考訳(メタデータ) (2020-12-01T13:17:27Z) - Fast Convergence Algorithm for Analog Federated Learning [30.399830943617772]
無線チャネル上での効率的なアナログフェデレーション学習のためのAirCompベースのFedSplitアルゴリズムを提案する。
提案アルゴリズムは, 目的関数が強く凸かつ滑らかであるという仮定の下で, 最適解に線形収束することを示す。
我々のアルゴリズムは、他のベンチマークFLアルゴリズムと比較して、より高速な収束を伴う不条件問題に対して、より堅牢であることが理論的および実験的に検証されている。
論文 参考訳(メタデータ) (2020-10-30T10:59:49Z) - Cluster-Based Cooperative Digital Over-the-Air Aggregation for Wireless
Federated Edge Learning [9.179817518536545]
空気上計算(AirComp)を用いた無線エッジにおける連合学習システムについて検討する。
このようなシステムでは、ユーザは、高速なモデルアグリゲーションを実現するために、マルチアクセスチャネル上でメッセージを同時に送信する。
本稿では,ユーザが位相補正を行い,全電力で送信する送信機の要求を緩和する改良されたディジタルAirComp方式を提案する。
論文 参考訳(メタデータ) (2020-08-03T16:29:52Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。