論文の概要: White-box Membership Inference Attacks against Diffusion Models
- arxiv url: http://arxiv.org/abs/2308.06405v3
- Date: Thu, 21 Nov 2024 16:42:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:15:19.346524
- Title: White-box Membership Inference Attacks against Diffusion Models
- Title(参考訳): 拡散モデルに対するホワイトボックスメンバーシップ推論攻撃
- Authors: Yan Pang, Tianhao Wang, Xuhui Kang, Mengdi Huai, Yang Zhang,
- Abstract要約: 拡散モデルは、より優れた画像生成性能のために、産業応用においてGANを覆い隠し始めている。
拡散モデルに適合したMIAを設計することを目的としている。
まず、ブラックボックス/ホワイトボックスモデルや攻撃特徴の選択といった要因を考慮して、既存のMIAを拡散モデルで徹底的に分析する。
白箱攻撃は現実世界のシナリオで非常に有効であることが分かり、現在最も効果的な攻撃は白箱である。
- 参考スコア(独自算出の注目度): 13.425726946466423
- License:
- Abstract: Diffusion models have begun to overshadow GANs and other generative models in industrial applications due to their superior image generation performance. The complex architecture of these models furnishes an extensive array of attack features. In light of this, we aim to design membership inference attacks (MIAs) catered to diffusion models. We first conduct an exhaustive analysis of existing MIAs on diffusion models, taking into account factors such as black-box/white-box models and the selection of attack features. We found that white-box attacks are highly applicable in real-world scenarios, and the most effective attacks presently are white-box. Departing from earlier research, which employs model loss as the attack feature for white-box MIAs, we employ model gradients in our attack, leveraging the fact that these gradients provide a more profound understanding of model responses to various samples. We subject these models to rigorous testing across a range of parameters, including training steps, sampling frequency, diffusion steps, and data variance. Across all experimental settings, our method consistently demonstrated near-flawless attack performance, with attack success rate approaching 100% and attack AUCROC near 1.0. We also evaluate our attack against common defense mechanisms, and observe our attacks continue to exhibit commendable performance.
- Abstract(参考訳): 拡散モデルは、より優れた画像生成性能のために、産業アプリケーションにおけるGANやその他の生成モデルに影を落とし始めている。
これらのモデルの複雑なアーキテクチャは、幅広いアタック機能を備えている。
本研究の目的は,拡散モデルを考慮したMIA(Community Inference attack)の設計である。
まず、ブラックボックス/ホワイトボックスモデルや攻撃特徴の選択といった要因を考慮して、既存のMIAを拡散モデルで徹底的に分析する。
白箱攻撃は現実世界のシナリオで非常に有効であることが分かり、現在最も効果的な攻撃は白箱である。
ホワイトボックスMIAの攻撃機能としてモデル損失を利用する以前の研究とは別に、これらの勾配が様々なサンプルに対するモデル応答をより深く理解するという事実を活用して、攻撃にモデル勾配を用いる。
これらのモデルは、トレーニングステップ、サンプリング周波数、拡散ステップ、データ分散など、さまざまなパラメータにわたって厳密なテストを行う。
実験では,攻撃成功率が100%に近づき,AUCROCが1.0に近づいた。
また、共通の防御機構に対する攻撃を評価し、攻撃が引き続き賞賛に値する性能を示し続けることを観察する。
関連論文リスト
- OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
ディープニューラルネットワークは、元の画像に近いサンプルを見つける敵の例に弱いが、モデルを誤分類させる可能性がある。
モデル中間層における隠れた特徴にランダムノイズを付加することにより,ブラックボックス攻撃に対する簡易かつ軽量な防御法を提案する。
本手法は,スコアベースと決定ベースの両方のブラックボックス攻撃に対するモデルのレジリエンスを効果的に向上させる。
論文 参考訳(メタデータ) (2023-10-01T03:53:23Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Membership Inference Attacks against Diffusion Models [0.0]
拡散モデルは近年、革新的な生成モデルとして注目されている。
本研究では,拡散モデルがメンバシップ推論攻撃に耐性があるかどうかを検討する。
論文 参考訳(メタデータ) (2023-02-07T05:20:20Z) - Minimizing Maximum Model Discrepancy for Transferable Black-box Targeted
Attacks [30.863450425927613]
モデル差分の観点から,ブラックボックスの標的攻撃問題について検討する。
我々は,ブラックボックス攻撃に対する一般化誤差を提示し,攻撃の成功を保証するための厳密な理論的解析を行う。
我々は理論解析に基づいてブラックボックス攻撃のための新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-12-18T08:19:08Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
ブラックボックスの敵攻撃は、あるモデルから別のモデルに転送することができる。
本研究では,分散縮小アンサンブル攻撃と呼ばれる新しいアンサンブル攻撃法を提案する。
実験結果から,提案手法は既存のアンサンブル攻撃を著しく上回り,対向移動性を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T06:33:27Z) - Training Meta-Surrogate Model for Transferable Adversarial Attack [98.13178217557193]
クエリーを許可しない場合、ブラックボックスモデルに対する逆攻撃を考える。
この設定では、多くの手法が代理モデルを直接攻撃し、得られた敵の例をターゲットモデルを騙すために転送する。
メタサロゲートモデル(Meta-Surrogate Model:MSM)は,このモデルに対する攻撃が,他のモデルに容易に転送できることを示す。
論文 参考訳(メタデータ) (2021-09-05T03:27:46Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z) - Two Sides of the Same Coin: White-box and Black-box Attacks for Transfer
Learning [60.784641458579124]
ホワイトボックスFGSM攻撃によるモデルロバスト性を効果的に向上することを示す。
また,移動学習モデルに対するブラックボックス攻撃手法を提案する。
ホワイトボックス攻撃とブラックボックス攻撃の双方の効果を系統的に評価するために,ソースモデルからターゲットモデルへの変換可能性の評価手法を提案する。
論文 参考訳(メタデータ) (2020-08-25T15:04:32Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
攻撃者が標的モデルに類似したモデルを用いて攻撃を発生させるブラックボックス設定における深層モデル固有の弱点について検討する。
本稿では,深部モデルの内部表現を他のモデルに直交させる新しい勾配正規化手法を提案する。
様々な大規模モデルにおいて,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2020-06-26T08:29:05Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。