論文の概要: Learning on Graphs with Out-of-Distribution Nodes
- arxiv url: http://arxiv.org/abs/2308.06714v1
- Date: Sun, 13 Aug 2023 08:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 15:42:28.970180
- Title: Learning on Graphs with Out-of-Distribution Nodes
- Title(参考訳): 分散ノードを用いたグラフの学習
- Authors: Yu Song and Donglin Wang
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ上で予測タスクを実行するための最先端モデルである。
この研究は、分散ノードによるグラフ学習の問題を定義する。
本稿では,異なるノード間の相互作用を明示的にモデル化する新しいGNNモデルであるOut-of-Distribution Graph Attention Network (OODGAT)を提案する。
- 参考スコア(独自算出の注目度): 33.141867473074264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are state-of-the-art models for performing
prediction tasks on graphs. While existing GNNs have shown great performance on
various tasks related to graphs, little attention has been paid to the scenario
where out-of-distribution (OOD) nodes exist in the graph during training and
inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes
with labels unseen from the training set. Since a lot of networks are
automatically constructed by programs, real-world graphs are often noisy and
may contain nodes from unknown distributions. In this work, we define the
problem of graph learning with out-of-distribution nodes. Specifically, we aim
to accomplish two tasks: 1) detect nodes which do not belong to the known
distribution and 2) classify the remaining nodes to be one of the known
classes. We demonstrate that the connection patterns in graphs are informative
for outlier detection, and propose Out-of-Distribution Graph Attention Network
(OODGAT), a novel GNN model which explicitly models the interaction between
different kinds of nodes and separate inliers from outliers during feature
propagation. Extensive experiments show that OODGAT outperforms existing
outlier detection methods by a large margin, while being better or comparable
in terms of in-distribution classification.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ上で予測タスクを実行する最先端モデルである。
既存のGNNは、グラフに関連するさまざまなタスクにおいて、優れたパフォーマンスを示しているが、トレーニングや推論中に、OOD(out-of-distribution)ノードがグラフに存在するシナリオにはほとんど注目されていない。
CVとNLPの概念を借用し、OODノードをトレーニングセットから見えないラベルを持つノードとして定義する。
多くのネットワークはプログラムによって自動的に構築されるため、現実世界のグラフはしばしば騒がしく、未知の分布のノードを含む可能性がある。
本研究では,分散ノードを用いたグラフ学習の問題を定義する。
具体的には2つの課題を 達成することを目指しています
1) 既知の分布に属さないノードを検出し,
2) 残りのノードを既知のクラスの1つに分類する。
グラフ内の接続パターンが外れ値検出に有用であることを実証し,特徴伝搬中の異なるノード間の相互作用を明示的にモデル化する新しいGNNモデルであるOut-of-Distribution Graph Attention Network (OODGAT)を提案する。
大規模な実験により、OODGATは分布内分類の点で優れているか同等であると同時に、既存の異常検出方法よりも大きなマージンで優れていることが示された。
関連論文リスト
- GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
グラフニューラルネットワーク(GNN)は、さまざまな領域にわたるグラフデータのモデリングに広く応用されている。
近年の研究では、特定のモデルのトレーニングや、よく訓練されたGNN上でのデータ修正に重点を置いて、OOD検出のグラフを調査している。
本稿では、GNNアーキテクチャのトレーニングデータと修正から独立して動作する、データ中心、教師なし、プラグアンドプレイのソリューションを提案する。
論文 参考訳(メタデータ) (2024-01-10T08:37:39Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
本研究では,グラフの半教師付き手法であるGraFNを提案し,同一クラスに属するノードをグループ化する。
GraFNはグラフ全体からラベル付きノードとアンカーノードからランダムにノードをサンプリングする。
実世界のグラフ上のノード分類において,GraFNが半教師付き手法と自己教師型手法のどちらよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T08:22:30Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Label Propagation across Graphs: Node Classification using Graph Neural
Tangent Kernels [12.445026956430826]
グラフニューラルネットワーク(GNN)はノード分類タスクにおいて優れたパフォーマンスを実現している。
我々の研究は、ラベル付きグラフのセットがトレーニング用に利用可能であり、ラベルなしのターゲットグラフは完全に分離されている、困難な帰納的設定について検討している。
テストグラフとトレーニンググラフが類似した分布から来るという暗黙の仮定の下で、我々のゴールは、観測されていない接続構造に一般化するラベリング関数を開発することである。
論文 参考訳(メタデータ) (2021-10-07T19:42:35Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。