論文の概要: Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes
- arxiv url: http://arxiv.org/abs/2308.06762v2
- Date: Mon, 4 Dec 2023 08:08:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 22:30:00.740563
- Title: Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes
- Title(参考訳): 高品位等方性量の指導による厚スライス胎児脳mrスキャンの組織分割
- Authors: Shijie Huang, Xukun Zhang, Zhiming Cui, He Zhang, Geng Chen, Dinggang
Shen
- Abstract要約: 本稿では,高品位等方性ボリュームから学習した知識を高密度スライススキャンの正確な組織セグメント化のために効率的に伝達するC2DA-Netを提案する。
我々のC2DA-Netは、注釈のない厚いスライススキャンで組織分画をガイドするために、注釈付き等方性ボリュームの小さなセットを十分に利用できる。
- 参考スコア(独自算出の注目度): 52.242103848335354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate tissue segmentation of thick-slice fetal brain magnetic resonance
(MR) scans is crucial for both reconstruction of isotropic brain MR volumes and
the quantification of fetal brain development. However, this task is
challenging due to the use of thick-slice scans in clinically-acquired fetal
brain data. To address this issue, we propose to leverage high-quality
isotropic fetal brain MR volumes (and also their corresponding annotations) as
guidance for segmentation of thick-slice scans. Due to existence of significant
domain gap between high-quality isotropic volume (i.e., source data) and
thick-slice scans (i.e., target data), we employ a domain adaptation technique
to achieve the associated knowledge transfer (from high-quality <source>
volumes to thick-slice <target> scans). Specifically, we first register the
available high-quality isotropic fetal brain MR volumes across different
gestational weeks to construct longitudinally-complete source data. To capture
domain-invariant information, we then perform Fourier decomposition to extract
image content and style codes. Finally, we propose a novel Cycle-Consistent
Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge
learned from high-quality isotropic volumes for accurate tissue segmentation of
thick-slice scans. Our C2DA-Net can fully utilize a small set of annotated
isotropic volumes to guide tissue segmentation on unannotated thick-slice
scans. Extensive experiments on a large-scale dataset of 372 clinically
acquired thick-slice MR scans demonstrate that our C2DA-Net achieves much
better performance than cutting-edge methods quantitatively and qualitatively.
- Abstract(参考訳): 厚スライス脳磁気共鳴(MR)スキャンの正確な組織分割は、等方性脳MRIボリュームの再構築と胎児脳の発生の定量化の両方に不可欠である。
しかし、この課題は、臨床的に獲得した胎児脳データに厚いスライススキャンを使用することによって困難である。
この問題に対処するため,我々は,高品位等方性胎児脳mrボリューム(およびそれに対応するアノテーション)を,厚いスライススキャンのセグメンテーションのためのガイダンスとして利用する。
高品質等方性ボリューム(すなわちソースデータ)と厚いスライススキャン(すなわちターゲットデータ)との間に大きな領域ギャップが存在するため、関連する知識伝達を達成するためにドメイン適応技術(高品質<ソース>ボリュームから厚いスライス<ターゲット>スキャン)を用いる。
具体的には, 生後数週間にまたがる高品位等方性胎児脳mrボリュームを登録し, 縦断的に完全なソースデータを構築した。
ドメイン不変情報をキャプチャするために、フーリエ分解を行い、画像の内容とスタイルコードを抽出する。
最後に,高品位等方性体積から得られた知識を効率的に伝達し,厚いスライススキャンの組織分割を精度良く行う新しいサイクル一貫性ドメイン適応ネットワーク(c2da-net)を提案する。
我々のC2DA-Netは、注釈のない厚いスライススキャンで組織分画をガイドするために、注釈付き等方性ボリュームの小さなセットを十分に利用できる。
C2DA-Net は, 372 個の臨床的に取得した高密度MR スキャンの大規模データセットに対する大規模な実験により, 最先端法よりも定量的に, 定性的に, はるかに優れた性能を示した。
関連論文リスト
- Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
我々は,dMRI空間内での胎児脳組織の正確な分画に基づく解剖学的拘束性トラクトグラフィーを提唱する。
独立試験データを用いて実験したところ、この方法は胎児の脳組織を正確に分画し、トラクトグラフィーの結果を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2024-03-04T19:56:19Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - An Unpaired Cross-modality Segmentation Framework Using Data
Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular
Schwannoma and Cochlea [7.7150383247700605]
CrossMoDAの課題は、未ラベル高分解能T2スキャンで前庭神経癌(VS)腫瘍とコチェリー領域を自動的に分離することである。
2022年版では、セグメンテーションタスクを多施設スキャンで拡張している。
本稿では,データ拡張とハイブリッド畳み込みネットワークを用いた非対向型クロスモーダルセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T01:15:33Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
深層学習に基づくアルゴリズムであるVox2Cortexを提案する。
我々は3つの脳MRIデータセットの広範な実験で、我々のメッシュは現場の最先端の方法で再構築されたものと同じくらい正確であることを示した。
論文 参考訳(メタデータ) (2022-03-17T17:06:00Z) - Synthetic magnetic resonance images for domain adaptation: Application
to fetal brain tissue segmentation [0.0]
FaBiANを用いて、胎児の脳の様々な現実的な磁気共鳴画像と、そのクラスラベルをシミュレートする。
本研究では,これらの合成アノテートデータを低コストで生成し,さらにターゲット超解像法を用いて再構成することにより,深層学習手法のドメイン適応に成功できることを実証する。
全体として、特に皮質灰白質、白質、小脳、深い灰白質、脳幹において、セグメンテーションの精度が著しく向上する。
論文 参考訳(メタデータ) (2021-11-08T13:22:14Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
我々は、英国バイオバンクの2万名以上の被験者のデータセットを使用し、全体Dixon法磁気共鳴法(MR)スキャンとデュアルエネルギーX線吸収率法(DXA)スキャンを併用した。
マルチモーダル画像マッチングコントラストフレームワークを導入し、同一対象の異なるモダリティスキャンを高精度にマッチングすることができる。
適応がなければ、この対照的なトレーニングステップで学習した対応が、自動クロスモーダルスキャン登録の実行に利用できることを示す。
論文 参考訳(メタデータ) (2021-07-14T12:35:05Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Automated Segmentation of Brain Gray Matter Nuclei on Quantitative
Susceptibility Mapping Using Deep Convolutional Neural Network [16.733578721523898]
脳皮質下核の鉄蓄積異常は、様々な神経変性疾患と相関していると報告されている。
本稿では3次元畳み込みニューラルネットワーク(CNN)に基づく2分岐残基構造U-Net(DB-ResUNet)を提案する。
論文 参考訳(メタデータ) (2020-08-03T14:32:30Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。