Unsupervised Image Denoising in Real-World Scenarios via
Self-Collaboration Parallel Generative Adversarial Branches
- URL: http://arxiv.org/abs/2308.06776v1
- Date: Sun, 13 Aug 2023 14:04:46 GMT
- Title: Unsupervised Image Denoising in Real-World Scenarios via
Self-Collaboration Parallel Generative Adversarial Branches
- Authors: Xin Lin, Chao Ren, Xiao Liu, Jie Huang, Yinjie Lei
- Abstract summary: Deep learning methods have shown remarkable performance in image denoising, particularly when trained on large-scale paired datasets.
Deep learning methods have shown remarkable performance in image denoising, particularly when trained on large-scale paired datasets.
However, acquiring such paired datasets for real-world scenarios poses a significant challenge.
- Score: 28.61750072026107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods have shown remarkable performance in image denoising,
particularly when trained on large-scale paired datasets. However, acquiring
such paired datasets for real-world scenarios poses a significant challenge.
Although unsupervised approaches based on generative adversarial networks offer
a promising solution for denoising without paired datasets, they are difficult
in surpassing the performance limitations of conventional GAN-based
unsupervised frameworks without significantly modifying existing structures or
increasing the computational complexity of denoisers. To address this problem,
we propose a SC strategy for multiple denoisers. This strategy can achieve
significant performance improvement without increasing the inference complexity
of the GAN-based denoising framework. Its basic idea is to iteratively replace
the previous less powerful denoiser in the filter-guided noise extraction
module with the current powerful denoiser. This process generates better
synthetic clean-noisy image pairs, leading to a more powerful denoiser for the
next iteration. This baseline ensures the stability and effectiveness of the
training network. The experimental results demonstrate the superiority of our
method over state-of-the-art unsupervised methods.
Related papers
- Random Sub-Samples Generation for Self-Supervised Real Image Denoising [9.459398471988724]
We propose a novel self-supervised real image denoising framework named Sampling Difference As Perturbation (SDAP)
We find that adding an appropriate perturbation to the training images can effectively improve the performance of BSN.
The results show that it significantly outperforms other state-of-the-art self-supervised denoising methods on real-world datasets.
arXiv Detail & Related papers (2023-07-31T16:39:35Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverse is a deep CNN-based denoising method for linear image reconstruction algorithms.
We develop a theoretical framework which shows that such training indeed obtains a denoising CNN.
On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2020-01-31T12:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.