Understanding Hackers' Work: An Empirical Study of Offensive Security
Practitioners
- URL: http://arxiv.org/abs/2308.07057v3
- Date: Wed, 23 Aug 2023 11:24:20 GMT
- Title: Understanding Hackers' Work: An Empirical Study of Offensive Security
Practitioners
- Authors: Andreas Happe, J\"urgen Cito
- Abstract summary: Offensive security-tests are a common way to pro-actively discover potential vulnerabilities.
The chronic lack of available white-hat hackers prevents sufficient security test coverage of software.
Research into automation tries to alleviate this problem by improving the efficiency of security testing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offensive security-tests are a common way to pro-actively discover potential
vulnerabilities. They are performed by specialists, often called
penetration-testers or white-hat hackers. The chronic lack of available
white-hat hackers prevents sufficient security test coverage of software.
Research into automation tries to alleviate this problem by improving the
efficiency of security testing. To achieve this, researchers and tool builders
need a solid understanding of how hackers work, their assumptions, and pain
points.
In this paper, we present a first data-driven exploratory qualitative study
of twelve security professionals, their work and problems occurring therein. We
perform a thematic analysis to gain insights into the execution of security
assignments, hackers' thought processes and encountered challenges.
This analysis allows us to conclude with recommendations for researchers and
tool builders to increase the efficiency of their automation and identify novel
areas for research.
Related papers
- Towards Automated Penetration Testing: Introducing LLM Benchmark, Analysis, and Improvements [1.4433703131122861]
Large language models (LLMs) have shown potential across various domains, including cybersecurity.
There is currently no comprehensive, open, end-to-end automated penetration testing benchmark.
This paper introduces a novel open benchmark for LLM-based automated penetration testing.
arXiv Detail & Related papers (2024-10-22T16:18:41Z) - Hacking, The Lazy Way: LLM Augmented Pentesting [0.0]
"LLM Augmented Pentesting" is demonstrated through a tool named "Pentest Copilot"
Our research includes a "chain of thought" mechanism to streamline token usage and boost performance.
We propose a novel file analysis approach, enabling LLMs to understand files.
arXiv Detail & Related papers (2024-09-14T17:40:35Z) - A Qualitative Study on Using ChatGPT for Software Security: Perception vs. Practicality [1.7624347338410744]
ChatGPT is a Large Language Model (LLM) that can perform a variety of tasks with remarkable semantic understanding and accuracy.
This study aims to gain an understanding of the potential of ChatGPT as an emerging technology for supporting software security.
It was determined that security practitioners view ChatGPT as beneficial for various software security tasks, including vulnerability detection, information retrieval, and penetration testing.
arXiv Detail & Related papers (2024-08-01T10:14:05Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
Recent works have identified a gap between research and practice in artificial intelligence security.
We revisit the threat models of the six most studied attacks in AI security research and match them to AI usage in practice.
arXiv Detail & Related papers (2023-11-16T16:09:44Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Semantic Similarity-Based Clustering of Findings From Security Testing
Tools [1.6058099298620423]
In particular, it is common practice to use automated security testing tools that generate reports after inspecting a software artifact from multiple perspectives.
To identify these duplicate findings manually, a security expert has to invest resources like time, effort, and knowledge.
In this study, we investigated the potential of applying Natural Language Processing for clustering semantically similar security findings.
arXiv Detail & Related papers (2022-11-20T19:03:19Z) - Why Should Adversarial Perturbations be Imperceptible? Rethink the
Research Paradigm in Adversarial NLP [83.66405397421907]
We rethink the research paradigm of textual adversarial samples in security scenarios.
We first collect, process, and release a security datasets collection Advbench.
Next, we propose a simple method based on rules that can easily fulfill the actual adversarial goals to simulate real-world attack methods.
arXiv Detail & Related papers (2022-10-19T15:53:36Z) - A Smart and Defensive Human-Machine Approach to Code Analysis [0.0]
We propose a method that employs the use of virtual assistants to work with programmers to ensure that software are as safe as possible.
The pro- posed method employs a recommender system that uses various metrics to help programmers select the most appropriate code analysis tool for their project.
arXiv Detail & Related papers (2021-08-06T20:42:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.