Efficient Characterizations of Multiphoton States with an Ultra-thin Optical Device
- URL: http://arxiv.org/abs/2308.07067v2
- Date: Tue, 25 Jun 2024 10:21:26 GMT
- Title: Efficient Characterizations of Multiphoton States with an Ultra-thin Optical Device
- Authors: Kui An, Zilei Liu, Ting Zhang, Siqi Li, You Zhou, Xiao Yuan, Leiran Wang, Wenfu Zhang, Guoxi Wang, He Lu,
- Abstract summary: We show that a single metasurface optical device would allow more efficient characterizations of multiphoton entangled states.
We observe notable advantages in the reconstruction of multiphoton entanglement, including using fewer measurements, having higher accuracy, and being robust against experimental imperfections.
Our work unveils the feasibility of metasurface as a favorable integrated optical device for efficient characterization of multiphoton entanglement, and sheds light on scalable photonic quantum technologies with ultra-thin optical devices.
- Score: 8.471516713037156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metasurface enables the generation and manipulation of multiphoton entanglement with flat optics, providing a more efficient platform for large-scale photonic quantum information processing. Here, we show that a single metasurface optical device would allow more efficient characterizations of multiphoton entangled states, such as shadow tomography, which generally requires fast and complicated control of optical setups to perform information-complete measurements, a demanding task using conventional optics. The compact and stable device here allows implementations of general positive observable value measures with a reduced sample complexity and significantly alleviates the experimental complexity to implement shadow tomography. Integrating self-learning and calibration algorithms, we observe notable advantages in the reconstruction of multiphoton entanglement, including using fewer measurements, having higher accuracy, and being robust against experimental imperfections. Our work unveils the feasibility of metasurface as a favorable integrated optical device for efficient characterization of multiphoton entanglement, and sheds light on scalable photonic quantum technologies with ultra-thin optical devices.
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Characterization of multi-mode linear optical networks [0.0]
We formulate efficient procedures for the characterization of optical circuits in the presence of imperfections.
We show the viability of this approach in an experimentally relevant scenario, defined by a tunable integrated photonic circuit.
Our findings can find application in a wide range of optical setups, based both on bulk and integrated configurations.
arXiv Detail & Related papers (2023-04-13T13:09:14Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - A quantum-enhanced wide-field phase imager [37.41181188499616]
We introduce a super-sensitive phase imager, which uses space-polarization hyper-entanglement to operate over a large field-of-view without the need of scanning operation.
We show quantum-enhanced imaging of birefringent and non-birefringent phase samples over large areas, with sensitivity improvements over equivalent measurements carried out with equal number of photons.
arXiv Detail & Related papers (2021-05-24T16:37:03Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Spatial Mode Correction of Single Photons using Machine Learning [1.8086378019947618]
We exploit the self-learning and self-evolving features of artificial neural networks to correct the complex spatial profile of distorted Laguerre-Gaussian modes at the single-photon level.
Our results have important implications for real-time turbulence correction of structured photons and single-photon images.
arXiv Detail & Related papers (2020-06-14T01:25:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.