Order-based Structure Learning with Normalizing Flows
- URL: http://arxiv.org/abs/2308.07480v2
- Date: Sat, 17 Feb 2024 07:03:46 GMT
- Title: Order-based Structure Learning with Normalizing Flows
- Authors: Hamidreza Kamkari, Vahid Balazadeh, Vahid Zehtab, Rahul G. Krishnan
- Abstract summary: Estimating causal structure of observational data is a challenging search problem that scales super-exponentially with graph size.
Existing methods use continuous relaxations to make this problem computationally tractable but often restrict the data-generating process to additive noise models (ANMs)
We present Order-based Structure Learning with Normalizing Flows (OSLow), a framework that relaxes these assumptions using autoregressive normalizing flows.
- Score: 7.972479571606131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the causal structure of observational data is a challenging
combinatorial search problem that scales super-exponentially with graph size.
Existing methods use continuous relaxations to make this problem
computationally tractable but often restrict the data-generating process to
additive noise models (ANMs) through explicit or implicit assumptions. We
present Order-based Structure Learning with Normalizing Flows (OSLow), a
framework that relaxes these assumptions using autoregressive normalizing
flows. We leverage the insight that searching over topological orderings is a
natural way to enforce acyclicity in structure discovery and propose a novel,
differentiable permutation learning method to find such orderings. Through
extensive experiments on synthetic and real-world data, we demonstrate that
OSLow outperforms prior baselines and improves performance on the observational
Sachs and SynTReN datasets as measured by structural hamming distance and
structural intervention distance, highlighting the importance of relaxing the
ANM assumption made by existing methods.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
Methods based on functional causal models can identify a unique graph, but suffer from the curse of dimensionality or impose strong parametric assumptions.
We propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures.
We provide theoretical guarantees for correctness and worst-case time complexities, with empirical validation on synthetic data.
arXiv Detail & Related papers (2024-05-23T12:28:16Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Accelerated structured matrix factorization [0.0]
Matrix factorization exploits the idea that, in complex high-dimensional data, the actual signal typically lies in lower-dimensional structures.
By exploiting Bayesian shrinkage priors, we devise a computationally convenient approach for high-dimensional matrix factorization.
The dependence between row and column entities is modeled by inducing flexible sparse patterns within factors.
arXiv Detail & Related papers (2022-12-13T11:35:01Z) - On the Sparse DAG Structure Learning Based on Adaptive Lasso [39.31370830038554]
We develop a data-driven DAG structure learning method without the predefined threshold, called adaptive NOTEARS [30]
We show that adaptive NOTEARS enjoys the oracle properties under some specific conditions. Furthermore, simulation results validate the effectiveness of our method, without setting any gap of edges around zero.
arXiv Detail & Related papers (2022-09-07T05:47:59Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.