Data Race Detection Using Large Language Models
- URL: http://arxiv.org/abs/2308.07505v2
- Date: Tue, 3 Oct 2023 06:09:18 GMT
- Title: Data Race Detection Using Large Language Models
- Authors: Le Chen, Xianzhong Ding, Murali Emani, Tristan Vanderbruggen, Pei-hung
Lin, Chuanhua Liao
- Abstract summary: Large language models (LLMs) are an alternative strategy to facilitate analyses and optimizations of high-performance computing programs.
In this paper, we explore a novel LLM-based data race detection approach combining prompting engineering and fine-tuning techniques.
- Score: 1.0013600887991827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are demonstrating significant promise as an
alternate strategy to facilitate analyses and optimizations of high-performance
computing programs, circumventing the need for resource-intensive manual tool
creation. In this paper, we explore a novel LLM-based data race detection
approach combining prompting engineering and fine-tuning techniques. We create
a dedicated dataset named DRB-ML, which is derived from DataRaceBench, with
fine-grain labels showing the presence of data race pairs and their associated
variables, line numbers, and read/write information. DRB-ML is then used to
evaluate representative LLMs and fine-tune open-source ones. Our experiment
shows that LLMs can be a viable approach to data race detection. However, they
still cannot compete with traditional data race detection tools when we need
detailed information about variable pairs causing data races.
Related papers
- Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
Large language models have shown excellent performance on many knowledge-intensive tasks.
However, pretraining data tends to contain misleading and even conflicting information.
This study systematically analyze LLMs' learning preferences for data with conflicting knowledge.
arXiv Detail & Related papers (2024-10-07T06:49:41Z) - On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
Large language models (LLMs) have achieved impressive success in text-formatted learning problems.
LLMs can label datasets with even better quality than skilled human annotators.
In this paper, we propose unsupervised prompt learning for classification with black-box LLMs.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
We evaluate OpenAI's GPT-3.5 as a "Language Data Scientist" (LDS)
The model was tested on a diverse set of benchmark datasets to evaluate its performance across multiple standards.
arXiv Detail & Related papers (2024-03-29T22:59:34Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs)
SEED features an that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand.
arXiv Detail & Related papers (2023-10-01T17:59:20Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - DataRaceBench V1.4.1 and DataRaceBench-ML V0.1: Benchmark Suites for
Data Race Detection [23.240375422302666]
Data races pose a significant threat in multi-threaded parallel applications due to their negative impact on program correctness.
Open-source benchmark suite, DataRaceBench, is crafted to assess these data race detection tools in a systematic and measurable manner.
This paper introduces a derived dataset named DataRaceBench-ML (DRB-ML).
arXiv Detail & Related papers (2023-08-16T16:23:13Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks.
We propose AnnoLLM, which adopts a two-step approach, explain-then-annotate.
We build the first conversation-based information retrieval dataset employing AnnoLLM.
arXiv Detail & Related papers (2023-03-29T17:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.