On Unsupervised Prompt Learning for Classification with Black-box Language Models
- URL: http://arxiv.org/abs/2410.03124v1
- Date: Fri, 4 Oct 2024 03:39:28 GMT
- Title: On Unsupervised Prompt Learning for Classification with Black-box Language Models
- Authors: Zhen-Yu Zhang, Jiandong Zhang, Huaxiu Yao, Gang Niu, Masashi Sugiyama,
- Abstract summary: Large language models (LLMs) have achieved impressive success in text-formatted learning problems.
LLMs can label datasets with even better quality than skilled human annotators.
In this paper, we propose unsupervised prompt learning for classification with black-box LLMs.
- Score: 71.60563181678323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved impressive success in text-formatted learning problems, and most popular LLMs have been deployed in a black-box fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream task to obtain better performance, and this functionality is provided by the owners of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always required to adjust the model parameters. However, in many real-world applications, LLMs can label textual datasets with even better quality than skilled human annotators, motivating us to explore the possibility of fine-tuning black-box LLMs with unlabeled data. In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where the learning parameters are the prompt itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled as a sequence of discrete tokens, and every token has its own to-be-learned categorical distribution. On the other hand, for learning the pseudo labels, we are the first to consider the in-context learning (ICL) capabilities of LLMs: we first identify reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as in-context demonstrations alongside the prompt. Those in-context demonstrations matter: previously, they are involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus, taking them into account during training makes the prompt-learning and prompt-using stages more consistent. Experiments on benchmark datasets show the effectiveness of our proposed algorithm. After unsupervised prompt learning, we can use the pseudo-labeled dataset for further fine-tuning by the owners of the black-box LLMs.
Related papers
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
Large Language Models (LLMs) have demonstrated remarkable performance through supervised fine-tuning or in-context learning using gold labels.
This study explores whether solely utilizing unlabeled data can elicit strong model capabilities.
We propose a new paradigm termed zero-to-strong generalization.
arXiv Detail & Related papers (2024-09-19T02:59:44Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Tuning Vision-Language Models with Candidate Labels by Prompt Alignment [8.013652039026264]
Vision-language models (VLMs) can learn high-quality representations from a large-scale training dataset of image-text pairs.
Prompt learning is a popular approach to fine-tuning VLM to adapt them to downstream tasks.
We propose a framework to guide the learning process with candidate labels.
arXiv Detail & Related papers (2024-07-10T13:19:31Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
We introduce a variety of different techniques to assess the degrees of contamination, including statistical tests for conditional distribution modeling and four tests that identify memorization.
arXiv Detail & Related papers (2024-03-11T12:07:13Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
One branch of methods adapts CLIP by learning prompts using visual information.
An alternative approach resorts to training-free methods by generating class descriptions from large language models.
We propose to combine the strengths of both streams by learning prompts using only text data.
arXiv Detail & Related papers (2024-01-04T18:59:49Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL) is an emergent capability of Large Language Models (LLMs)
Previous studies have shown that using LLMs' outputs as labels is effective in training models to select demonstrations.
This paper presents an analysis on different utility functions by focusing on LLMs' output probability given ground-truth output.
arXiv Detail & Related papers (2023-11-16T07:03:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Data Race Detection Using Large Language Models [1.0013600887991827]
Large language models (LLMs) are an alternative strategy to facilitate analyses and optimizations of high-performance computing programs.
In this paper, we explore a novel LLM-based data race detection approach combining prompting engineering and fine-tuning techniques.
arXiv Detail & Related papers (2023-08-15T00:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.