Searching for Novel Chemistry in Exoplanetary Atmospheres using Machine
Learning for Anomaly Detection
- URL: http://arxiv.org/abs/2308.07604v1
- Date: Tue, 15 Aug 2023 07:19:54 GMT
- Title: Searching for Novel Chemistry in Exoplanetary Atmospheres using Machine
Learning for Anomaly Detection
- Authors: Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, Eyup B. Unlu
- Abstract summary: We advocate the application of machine learning (ML) techniques for anomaly (novelty) detection to exoplanet transit spectra.
We demonstrate the feasibility of two popular anomaly detection methods on a large public database of synthetic spectra.
- Score: 1.8434042562191815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The next generation of telescopes will yield a substantial increase in the
availability of high-resolution spectroscopic data for thousands of exoplanets.
The sheer volume of data and number of planets to be analyzed greatly motivate
the development of new, fast and efficient methods for flagging interesting
planets for reobservation and detailed analysis. We advocate the application of
machine learning (ML) techniques for anomaly (novelty) detection to exoplanet
transit spectra, with the goal of identifying planets with unusual chemical
composition and even searching for unknown biosignatures. We successfully
demonstrate the feasibility of two popular anomaly detection methods (Local
Outlier Factor and One Class Support Vector Machine) on a large public database
of synthetic spectra. We consider several test cases, each with different
levels of instrumental noise. In each case, we use ROC curves to quantify and
compare the performance of the two ML techniques.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Machine Learning for Exoplanet Detection in High-Contrast Spectroscopy: Revealing Exoplanets by Leveraging Hidden Molecular Signatures in Cross-Correlated Spectra with Convolutional Neural Networks [0.0]
Cross-correlation for spectroscopy uses molecular templates to isolate a planet's spectrum from its host star.
We introduce machine learning for cross-correlation spectroscopy (MLCCS)
The method aims to leverage weak assumptions on exoplanet characterisation, such as the presence of specific molecules in atmospheres, to improve detection sensitivity for exoplanets.
arXiv Detail & Related papers (2024-05-22T09:25:58Z) - deep-REMAP: Parameterization of Stellar Spectra Using Regularized
Multi-Task Learning [0.0]
Deep-Regularized Ensemble-based Multi-task Learning with Asymmetric Loss for Probabilistic Inference ($rmdeep-REMAP$)
We develop a novel framework that utilizes the rich synthetic spectra from the PHOENIX library and observational data from the MARVELS survey to accurately predict stellar atmospheric parameters.
arXiv Detail & Related papers (2023-11-07T05:41:48Z) - Analyze Mass Spectrometry data with Artificial Intelligence to assist
the understanding of past habitability of Mars and provide insights for
future missions [0.0]
This paper presents an application of artificial intelligence on mass spectrometry data for detecting habitability potential of ancient Mars.
Although data was collected for planet Mars the same approach can be replicated for any terrestrial object of our solar system.
arXiv Detail & Related papers (2023-10-18T11:14:46Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - ExoSGAN and ExoACGAN: Exoplanet Detection using Adversarial Training
Algorithms [0.0]
We use two variations of generative adversarial networks to detect transiting exoplanets in K2 data.
Our techniques are able to categorize the light curves with a recall and precision of 1.00 on the test data.
arXiv Detail & Related papers (2022-07-20T05:45:36Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Automation Of Transiting Exoplanet Detection, Identification and
Habitability Assessment Using Machine Learning Approaches [0.0]
We analyze the light intensity curves from stars captured by the Kepler telescope to detect the potential curves that exhibit the characteristics of an existence of a possible planetary system.
We address the automation of exoplanet identification and habitability determination by leveraging several state-of-art machine learning and ensemble approaches.
arXiv Detail & Related papers (2021-12-06T19:00:12Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.