Machine Learning for Exoplanet Detection in High-Contrast Spectroscopy: Revealing Exoplanets by Leveraging Hidden Molecular Signatures in Cross-Correlated Spectra with Convolutional Neural Networks
- URL: http://arxiv.org/abs/2405.13469v1
- Date: Wed, 22 May 2024 09:25:58 GMT
- Title: Machine Learning for Exoplanet Detection in High-Contrast Spectroscopy: Revealing Exoplanets by Leveraging Hidden Molecular Signatures in Cross-Correlated Spectra with Convolutional Neural Networks
- Authors: Emily O. Garvin, Markus J. Bonse, Jean Hayoz, Gabriele Cugno, Jonas Spiller, Polychronis A. Patapis, Dominique Petit Dit de la Roche, Rakesh Nath-Ranga, Olivier Absil, Nicolai F. Meinshausen, Sascha P. Quanz,
- Abstract summary: Cross-correlation for spectroscopy uses molecular templates to isolate a planet's spectrum from its host star.
We introduce machine learning for cross-correlation spectroscopy (MLCCS)
The method aims to leverage weak assumptions on exoplanet characterisation, such as the presence of specific molecules in atmospheres, to improve detection sensitivity for exoplanets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The new generation of observatories and instruments (VLT/ERIS, JWST, ELT) motivate the development of robust methods to detect and characterise faint and close-in exoplanets. Molecular mapping and cross-correlation for spectroscopy use molecular templates to isolate a planet's spectrum from its host star. However, reliance on signal-to-noise ratio (S/N) metrics can lead to missed discoveries, due to strong assumptions of Gaussian independent and identically distributed noise. We introduce machine learning for cross-correlation spectroscopy (MLCCS); the method aims to leverage weak assumptions on exoplanet characterisation, such as the presence of specific molecules in atmospheres, to improve detection sensitivity for exoplanets. MLCCS methods, including a perceptron and unidimensional convolutional neural networks, operate in the cross-correlated spectral dimension, in which patterns from molecules can be identified. We test on mock datasets of synthetic planets inserted into real noise from SINFONI at K-band. The results from MLCCS show outstanding improvements. The outcome on a grid of faint synthetic gas giants shows that for a false discovery rate up to 5%, a perceptron can detect about 26 times the amount of planets compared to an S/N metric. This factor increases up to 77 times with convolutional neural networks, with a statistical sensitivity shift from 0.7% to 55.5%. In addition, MLCCS methods show a drastic improvement in detection confidence and conspicuity on imaging spectroscopy. Once trained, MLCCS methods offer sensitive and rapid detection of exoplanets and their molecular species in the spectral dimension. They handle systematic noise and challenging seeing conditions, can adapt to many spectroscopic instruments and modes, and are versatile regarding atmospheric characteristics, which can enable identification of various planets in archival and future data.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Galaxy spectroscopy without spectra: Galaxy properties from photometric images with conditional diffusion models [3.556281115019309]
We develop a generative AI method capable of predicting optical galaxy spectra from photometric broad-band images alone.
This work is the first attempt in the literature to infer velocity dispersion from photometric images.
We can predict the presence of an active galactic nucleus up to an accuracy of 82%.
arXiv Detail & Related papers (2024-06-26T08:49:51Z) - Machine learning for exoplanet detection in high-contrast spectroscopy Combining cross correlation maps and deep learning on medium-resolution integral-field spectra [0.0]
We develop a new method to leverage the spectral and spatial dimensions in integral-field spectroscopy (IFS) datasets.
We train a supervised deep-learning algorithm to improve the detection sensitivity to high-contrast exoplanets.
We demonstrate that ML techniques have the potential to improve the detection limits and reduce false positives for directly imaged planets.
arXiv Detail & Related papers (2024-05-22T09:25:58Z) - Searching for Novel Chemistry in Exoplanetary Atmospheres using Machine
Learning for Anomaly Detection [1.8434042562191815]
We advocate the application of machine learning (ML) techniques for anomaly (novelty) detection to exoplanet transit spectra.
We demonstrate the feasibility of two popular anomaly detection methods on a large public database of synthetic spectra.
arXiv Detail & Related papers (2023-08-15T07:19:54Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Neural network-based on-chip spectroscopy using a scalable plasmonic
encoder [0.4397520291340694]
Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio (SNR), and spectral resolution.
Here, we demonstrate a deep learning-based spectral reconstruction framework using a compact and low-cost on-chip sensing scheme.
arXiv Detail & Related papers (2020-12-01T22:50:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.