First Passage Times for Continuous Quantum Measurement Currents
- URL: http://arxiv.org/abs/2308.07810v3
- Date: Wed, 7 Aug 2024 12:57:17 GMT
- Title: First Passage Times for Continuous Quantum Measurement Currents
- Authors: Michael J. Kewming, Anthony Kiely, Steve Campbell, Gabriel T. Landi,
- Abstract summary: The First Passage Time (FPT) is the time taken for a process to reach a desired threshold.
In this letter we address the FPT of the measurement current in the case of continuously measured quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The First Passage Time (FPT) is the time taken for a stochastic process to reach a desired threshold. In this letter we address the FPT of the stochastic measurement current in the case of continuously measured quantum systems. Our approach is based on a charge-resolved master equation, which is related to the Full-Counting statistics of charge detection. In the quantum jump unravelling this takes the form of a coupled system of master equations, while for quantum diffusion it becomes a type of quantum Fokker-Planck equation. In both cases, we show that the FPT can be obtained by introducing absorbing boundary conditions, making their computation extremely efficient {and analytically tractable}. The versatility of our framework is demonstrated with two relevant examples. First, we show how our method can be used to study the tightness of recently proposed kinetic uncertainty relations (KURs) for quantum jumps, which place bounds on the signal-to-noise ratio of the FPT. Second, we study the usage of qubits as threshold detectors for Rabi pulses, and show how our method can be employed to maximize the detection probability while, at the same time, minimize the occurrence of false positives.
Related papers
- Bounds on Fluctuations of First Passage Times for Counting Observables in Classical and Quantum Markov Processes [0.0]
We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes.
For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers.
For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps.
arXiv Detail & Related papers (2024-05-15T19:16:52Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Solomon equations for qubit and two-level systems: Insights into non-Poissonian quantum jumps [41.94295877935867]
We measure and model the combined relaxation of a qubit coupled to a discrete two-level system(TLS) environment.
If the TLSs are much longer-lived than the qubit, non-exponential relaxation and non-Poissonian quantum jumps can be observed.
arXiv Detail & Related papers (2023-07-13T16:51:29Z) - Quantum metrology in the finite-sample regime [0.6299766708197883]
In quantum metrology, the ultimate precision of estimating an unknown parameter is often stated in terms of the Cram'er-Rao bound.
We propose to quantify the quality of a protocol by the probability of obtaining an estimate with a given accuracy.
arXiv Detail & Related papers (2023-07-12T18:00:04Z) - Snapshotting Quantum Dynamics at Multiple Time Points [10.226937603741474]
We propose a method to extract dynamic information from a quantum system at intermediate time points.
We reconstruct a multi-time quasi-probability distribution (QPD) that correctly recovers the probability at the respective time points.
arXiv Detail & Related papers (2022-07-13T10:28:01Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Scattering as a quantum metrology problem: a quantum walk approach [0.0]
We address the scattering of a quantum particle by a one-dimensional barrier potential over a set of discrete positions.
We formalize the problem as a continuous-time quantum walk on a lattice with an impurity, and use the quantum Fisher information as a mean to quantify the maximal possible accuracy in the estimation of the height of the barrier.
arXiv Detail & Related papers (2020-10-23T14:42:25Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.