Bounds on Fluctuations of First Passage Times for Counting Observables in Classical and Quantum Markov Processes
- URL: http://arxiv.org/abs/2405.09669v1
- Date: Wed, 15 May 2024 19:16:52 GMT
- Title: Bounds on Fluctuations of First Passage Times for Counting Observables in Classical and Quantum Markov Processes
- Authors: George Bakewell-Smith, Federico Girotti, Mădălin Guţă, Juan P. Garrahan,
- Abstract summary: We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes.
For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers.
For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the statistics of first passage times (FPTs) of trajectory observables in both classical and quantum Markov processes. We consider specifically the FPTs of counting observables, that is, the times to reach a certain threshold of a trajectory quantity which takes values in the positive integers and is non-decreasing in time. For classical continuous-time Markov chains we rigorously prove: (i) a large deviation principle (LDP) for FPTs, whose corollary is a strong law of large numbers; (ii) a concentration inequality for the FPT of the dynamical activity, which provides an upper bound to the probability of its fluctuations to all orders; and (iii) an upper bound to the probability of the tails for the FPT of an arbitrary counting observable. For quantum Markov processes we rigorously prove: (iv) the quantum version of the LDP, and subsequent strong law of large numbers, for the FPTs of generic counts of quantum jumps; (v) a concentration bound for the the FPT of total number of quantum jumps, which provides an upper bound to the probability of its fluctuations to all orders, together with a similar bound for the sub-class of quantum reset processes which requires less strict irreducibility conditions; and (vi) a tail bound for the FPT of arbitrary counts. Our results allow to extend to FPTs the so-called "inverse thermodynamic uncertainty relations" that upper bound the size of fluctuations in time-integrated quantities. We illustrate our results with simple examples.
Related papers
- Generalized quantum asymptotic equipartition [11.59751616011475]
We prove that all operationally relevant divergences converge to the quantum relative entropy between two sets of quantum states.
In particular, both the smoothed min-relative entropy between two sequential processes of quantum channels can be lower bounded by the sum of the regularized minimum output channel divergences.
We apply our generalized AEP to quantum resource theories and provide improved and efficient bounds for entanglement distillation, magic state distillation, and the entanglement cost of quantum states and channels.
arXiv Detail & Related papers (2024-11-06T16:33:16Z) - Semiclassical Quantum Trajectories in the Monitored Lipkin-Meshkov-Glick Model [41.94295877935867]
We investigate the dynamics of the Lipkin-Meshkov-Glick model, composed of $N$ all-to-all interacting spins $1/2$, under a weak external monitoring.
We derive a set of semiclassical equations describing the evolution of the expectation values of global spin observables, which become exact in the thermodynamic limit.
The transition is not affected by post-selection issues, as it is already visible at the level of ensemble averages.
arXiv Detail & Related papers (2024-07-29T18:00:00Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Universal and nonuniversal probability laws in Markovian open quantum
dynamics subject to generalized reset processes [0.0]
We consider quantum jump trajectories of Markovian open quantum systems subject to in time resets of their state to an initial configuration.
For observables related to functions of the quantum state, we show that the probability of certain orderings in the sequences obeys a universal law.
arXiv Detail & Related papers (2023-10-10T20:04:21Z) - First Passage Times for Continuous Quantum Measurement Currents [0.0]
The First Passage Time (FPT) is the time taken for a process to reach a desired threshold.
In this letter we address the FPT of the measurement current in the case of continuously measured quantum systems.
arXiv Detail & Related papers (2023-08-15T14:39:56Z) - Stationarity of quantum statistical ensembles at first-order phase
transition points [0.0]
We study the dynamics of quantum statistical ensembles at first-order phase transition points of finite macroscopic systems.
Our results support the validity of the squeezed ensemble from a dynamical point of view and open the door to non-equilibrium statistical physics.
arXiv Detail & Related papers (2023-05-20T12:26:25Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Exponential precision by reaching a quantum critical point [0.0]
We report a protocol that is capable of surpassing the quadratic scaling, and yields an exponential advantage.
The exponential advantage stems from the breakdown of the adiabatic condition close to a critical point.
Our findings unveil a novel quantum metrological protocol whose precision scaling goes beyond the paradigmatic Heisenberg limit.
arXiv Detail & Related papers (2021-12-21T14:46:33Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.