Relightable and Animatable Neural Avatar from Sparse-View Video
- URL: http://arxiv.org/abs/2308.07903v2
- Date: Thu, 17 Aug 2023 08:26:44 GMT
- Title: Relightable and Animatable Neural Avatar from Sparse-View Video
- Authors: Zhen Xu, Sida Peng, Chen Geng, Linzhan Mou, Zihan Yan, Jiaming Sun,
Hujun Bao, Xiaowei Zhou
- Abstract summary: This paper tackles the challenge of creating relightable and animatable neural avatars from sparse-view (or even monocular) videos of dynamic humans under unknown illumination.
- Score: 66.77811288144156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the challenge of creating relightable and animatable
neural avatars from sparse-view (or even monocular) videos of dynamic humans
under unknown illumination. Compared to studio environments, this setting is
more practical and accessible but poses an extremely challenging ill-posed
problem. Previous neural human reconstruction methods are able to reconstruct
animatable avatars from sparse views using deformed Signed Distance Fields
(SDF) but cannot recover material parameters for relighting. While
differentiable inverse rendering-based methods have succeeded in material
recovery of static objects, it is not straightforward to extend them to dynamic
humans as it is computationally intensive to compute pixel-surface intersection
and light visibility on deformed SDFs for inverse rendering. To solve this
challenge, we propose a Hierarchical Distance Query (HDQ) algorithm to
approximate the world space distances under arbitrary human poses.
Specifically, we estimate coarse distances based on a parametric human model
and compute fine distances by exploiting the local deformation invariance of
SDF. Based on the HDQ algorithm, we leverage sphere tracing to efficiently
estimate the surface intersection and light visibility. This allows us to
develop the first system to recover animatable and relightable neural avatars
from sparse view (or monocular) inputs. Experiments demonstrate that our
approach is able to produce superior results compared to state-of-the-art
methods. Our code will be released for reproducibility.
Related papers
- Interactive Rendering of Relightable and Animatable Gaussian Avatars [37.73483372890271]
We propose a simple and efficient method to decouple body materials and lighting from multi-view or monocular avatar videos.
Our method can render higher quality results at a faster speed on both synthetic and real datasets.
arXiv Detail & Related papers (2024-07-15T13:25:07Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
We propose Relightable Neural Actor, a new video-based method for learning a pose-driven neural human model that can be relighted.
For training, our method solely requires a multi-view recording of the human under a known, but static lighting condition.
To evaluate our approach in real-world scenarios, we collect a new dataset with four identities recorded under different light conditions, indoors and outdoors.
arXiv Detail & Related papers (2023-12-18T14:30:13Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Rendering Humans from Object-Occluded Monocular Videos [32.67336188239284]
3D understanding and rendering of moving humans from monocular videos is a challenging task.
Existing methods cannot handle such defects due to two reasons.
We present OccNeRF, a neural rendering method that achieves better rendering of humans in severely occluded scenes.
arXiv Detail & Related papers (2023-08-08T23:12:33Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
This paper presents a novel approach to building highly photorealistic digital head avatars.
Our method learns a canonical space via an implicit function parameterized by a neural network.
At test time, our method is driven by a monocular RGB video.
arXiv Detail & Related papers (2023-03-25T13:56:33Z) - Efficient Meshy Neural Fields for Animatable Human Avatars [87.68529918184494]
Efficiently digitizing high-fidelity animatable human avatars from videos is a challenging and active research topic.
Recent rendering-based neural representations open a new way for human digitization with their friendly usability and photo-varying reconstruction quality.
We present EMA, a method that Efficiently learns Meshy neural fields to reconstruct animatable human Avatars.
arXiv Detail & Related papers (2023-03-23T00:15:34Z) - Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via
Self-supervised Scene Decomposition [40.46674919612935]
We present Vid2Avatar, a method to learn human avatars from monocular in-the-wild videos.
Our method does not require any groundtruth supervision or priors extracted from large datasets of clothed human scans.
It solves the tasks of scene decomposition and surface reconstruction directly in 3D by modeling both the human and the background in the scene jointly.
arXiv Detail & Related papers (2023-02-22T18:59:17Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Human Performance Modeling and Rendering via Neural Animated Mesh [40.25449482006199]
We bridge the traditional mesh with a new class of neural rendering.
In this paper, we present a novel approach for rendering human views from video.
We demonstrate our approach on various platforms, inserting virtual human performances into AR headsets.
arXiv Detail & Related papers (2022-09-18T03:58:00Z) - Neural Capture of Animatable 3D Human from Monocular Video [38.974181971541846]
We present a novel paradigm of building an animatable 3D human representation from a monocular video input, such that it can be rendered in any unseen poses and views.
Our method is based on a dynamic Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D human model serving as a geometry proxy.
arXiv Detail & Related papers (2022-08-18T09:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.