Few-Shot Multi-Human Neural Rendering Using Geometry Constraints
- URL: http://arxiv.org/abs/2502.07140v1
- Date: Tue, 11 Feb 2025 00:10:58 GMT
- Title: Few-Shot Multi-Human Neural Rendering Using Geometry Constraints
- Authors: Qian li, Victoria Fernàndez Abrevaya, Franck Multon, Adnane Boukhayma,
- Abstract summary: We present a method for recovering the shape and radiance of a scene consisting of multiple people given solely a few images.
Existing approaches using implicit neural representations have achieved impressive results that deliver accurate geometry and appearance.
We propose a neural implicit reconstruction method that addresses the inherent challenges of this task through the following contributions.
- Score: 8.819403814092865
- License:
- Abstract: We present a method for recovering the shape and radiance of a scene consisting of multiple people given solely a few images. Multi-human scenes are complex due to additional occlusion and clutter. For single-human settings, existing approaches using implicit neural representations have achieved impressive results that deliver accurate geometry and appearance. However, it remains challenging to extend these methods for estimating multiple humans from sparse views. We propose a neural implicit reconstruction method that addresses the inherent challenges of this task through the following contributions: First, we propose to use geometry constraints by exploiting pre-computed meshes using a human body model (SMPL). Specifically, we regularize the signed distances using the SMPL mesh and leverage bounding boxes for improved rendering. Second, we propose a ray regularization scheme to minimize rendering inconsistencies, and a saturation regularization for robust optimization in variable illumination. Extensive experiments on both real and synthetic datasets demonstrate the benefits of our approach and show state-of-the-art performance against existing neural reconstruction methods.
Related papers
- Generalizable Human Gaussians for Sparse View Synthesis [48.47812125126829]
This paper introduces a new method to learn generalizable human Gaussians that allows photorealistic and accurate view-rendering of a new human subject from a limited set of sparse views.
A pivotal innovation of our approach involves reformulating the learning of 3D Gaussian parameters into a regression process defined on the 2D UV space of a human template.
Our method outperforms recent methods on both within-dataset generalization as well as cross-dataset generalization settings.
arXiv Detail & Related papers (2024-07-17T17:56:30Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - FastHuman: Reconstructing High-Quality Clothed Human in Minutes [18.643091757385626]
We propose an approach for optimizing high-quality clothed human body shapes in minutes.
Our method uses a mesh-based patch warping technique to ensure multi-view photometric consistency.
Our approach has demonstrated promising results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-11-26T05:16:39Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural
Human Rendering [139.159534903657]
We develop a generalizable and efficient Neural Radiance Field (NeRF) pipeline for high-fidelity free-viewpoint human body details.
To better tackle self-occlusion, we devise a geometry-guided multi-view feature integration approach.
For achieving higher rendering efficiency, we introduce a geometry-guided progressive rendering pipeline.
arXiv Detail & Related papers (2021-12-08T14:42:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.